
Collapse OS Documentation

Collapse OS and its documentation are created by Virgil Dupras and licensed under the GNU GPL
v3.

This document was created at 2022-03-05 23:00:00 from documentation in CollapseOS snapshot
2022-02-21.

2

Table of contents
Documentation Files...6

1 General Documentation..6
1.1 Introduction to Collapse OS (intro.txt)...6
1.2 Forth Primer (primer.txt)...7
1.3 Collapse OS usage guide (usage.txt)...13
1.4 Implementation notes (impl.txt)..21
1.5 Dictionary (dict.txt)...28
1.6 The BLK subsystem (blk.txt)..36
1.7 RX/TX subsystem (rxtx.txt)..38
1.8 Block Server (blksrv) (blksrv.txt)...40
1.9 Design considerations (design.txt)..41
1.10 Editing text (ed.txt)...42
1.11 Memory Editor (me.txt)..46
1.12 Disassemblers (dis.txt)..48
1.13 Emulators (emul.txt)...49
1.14 Programming AVR chips (avr.txt)...50
1.15 Word tables (wordtbl.txt)..53
1.16 Cross-compilation (cross.txt)..53
1.17 Architecture management (arch.txt)..58
1.18 Bootstrap guide (bootstrap.txt)...58
1.19 Hardware Drivers (drivers.txt)..61
1.20 The Grid subsystem (grid.txt)...62
1.21 The PS/2 subsystem (ps2.txt)..64
1.22 Sega Master System ROM signatures (sega.txt)...64
1.23 Assembling Collapse OS from within it (selfhost.txt)..65
1.24 Algorithmic notes (algo.txt)..66
1.25 Frequently asked questions (faq.txt)...68

2 Assemblers..69
2.1 Assembling binaries (asm/intro.txt)..69
2.2 Z80 assembler specificities (asm/z80.txt)...71
2.3 8086 assembler specificities (asm/8086.txt)...73
2.4 6809 assembler specificities (asm/6809.txt)...75
2.5 6502 assembler (asm/6502.txt)...78
2.6 AVR assembler specificities (asm/avr.txt)...80

3 How to read the code..82
3.1 How to read this code (code/intro.txt)..82
3.2 Z80 Boot code (code/z80.txt)..84
3.3 8086 Boot code (code/8086.txt)..86
3.4 6809 Boot code (code/6809.txt)..87
3.5 6502 Boot code (code/6502.txt)..89

4 Hardware documentation..89
4.1 Running Collapse OS on real hardware (hw/intro.txt)...89
4.2 Asynchronous Communications Interface Adapters (hw/acia.txt)......................................91
4.3 Writing to a AT28 from Collapse OS (hw/at28.txt)..92
4.4 Making an ATmega328P blink (hw/avr.txt)..93
4.5 Remote access to Collapse OS (hw/tty.txt)...95
4.6 Accessing SD cards (sdcard.txt)..95

 3

4.7 Communicating through SPI (spi.txt)...95
5 Hardware: z80 hardware interfaces..96

5.1 Interfacing a PS/2 keyboard (hw/z80/ps2.txt)...96
5.2 PS/2 Connector (hw/z80/img/ps2-conn.png)..98
5.3 PS/2 74xx595 (hw/z80/img/ps2-595.png)..98
5.4 PS/2 ATtiny45 (hw/z80/img/ps2-t45.png)..99
5.5 PS/2 Z80 (hw/z80/img/ps2-z80.png)..100
5.6 Building a SPI relay for the z80 (hw/z80/spi.txt)...100
5.7 SPI Relay Schematic (hw/z80/img/spirelay.jpg)...102
5.8 Using Zilog's SIO as a console (hw/z80/sio.txt)...103

6 Hardware: Sega Master System (z80 based)..103
6.1 Sega Master System (hw/z80/sms/intro.txt)...103
6.2 Writing to a AT28 from a SMS (hw/z80/sms/at28.txt)...105
6.3 SMS Dual EEPROM (hw/z80/sms/img/dual-at28.jpg)..106
6.4 PS/2 keyboard on the SMS (hw/z80/sms/ps2.txt)...106
6.5 PS/2 interface (hw/z80/sms/img/ps2-to-sms.png)..109
6.6 SMS pad (hw/z80/sms/pad.txt)...109
6.7 Building a SPI relay for the SMS (hw/z80/sms/spi.txt)..110
6.8 VDP driver (hw/z80/sms/vdp.txt)..111

7 Hardware: Other z80 based devices..111
7.1 Dan's Z80 Single Board Computer (hw/z80/dan.txt)..111
7.2 TRS-80 Model 4p (hw/z80/trs80-4p.txt)...114
7.3 Z80-MBC2 (hw/z80/z80mbc2.txt)..125
7.4 RC2014 (hw/z80/rc2014/intro.txt)..126
7.5 Asynchronous Communications Interface Adapters (hw/z80/rc2014/acia.txt).................127
7.6 RC2014 ACIA (hw/z80/rc2014/img/acia.jpg)..128
7.7 TI-84+ (hw/z80/ti84/intro.txt)...128
7.8 TI-84+ LCD driver (hw/z80/ti84/lcd.txt)..132

8 Hardware: 6502 based devices...133
8.1 Apple IIe (hw/6502/appleiie/intro.txt)..133
8.2 Apple II's system monitor (hw/6502/appleiie/monitor.txt)...135
8.3 Alternative to typing: SPI through game port (hw/6502/appleiie/spihack.txt).................136

9 Hardware: Various other devices..138
9.1 PC/AT (hw/8086/pcat.txt)...138
9.2 TRS-80 Color Computer 2 (hw/6809/coco2.txt)..139
9.3 Writing to a AT28 EEPROM from a modern environment (hw/avr/at28.txt)...................142
9.4 AT28 R/W (hw/avr/img/at28wr.jpg)...143
9.5 Spit bytes through SPI from an Arduino Uno (hw/avr/spispit.txt)...................................143

Block filesystem...146
1 Architecture independent..146

1.1 Master Index: 0...146
1.2 Useful little words: 1-5...146
1.3 Pager: 6...148
1.4 Flow words: 7..148
1.5 RX/TX tools: 10-15..149
1.6 Block editor: 20-24...151
1.7 Visual editor: 25-32...152
1.8 Memory editor: 35-39...155
1.9 AVR SPI programmer: 40-43..157
1.10 Sega ROM signer: 45..158

4

1.11 Cross compilation: 200-205..158
1.12 Core words: 210-229...160
1.13 BLK subsystem: 230-234..167
1.14 RX/TX subsystem: 235...169
1.15 Grid subsystem: 240-241..169
1.16 PS/2 keyboard subsystem: 245-248..170
1.17 SD Card subsystem: 250-258..171
1.18 Fonts: 260-276..174
1.19 Automated tests: 290-296..179

2 Z80..182
2.1 Architecture index: 300...182
2.2 Z80 boot code: 301-314..182
2.3 Z80 assembler: 320-328..187
2.4 AT28 EEPROM: 330...190
2.5 SPI relay: 332..190
2.6 TMS9918: 335-337...191
2.7 MC6850 driver: 340-342..192
2.8 Zilog SIO driver: 345-348...193
2.9 Sega Master System VDP: 350-352..194
2.10 SMS PAD: 355-358...195
2.11 SMS KBD: 360-361..196
2.12 SMS SPI relay: 367...197
2.13 SMS Ports: 368-369..197
2.14 TI-84+ LCD: 370-373...198
2.15 TI-84+ Keyboard: 375-379...199
2.16 TRS-80 4P drivers: 380-391...201
2.17 Dan SBC drivers: 395-409..205
2.18 Virgil's workspace: 410-416..210

3 AVR...212
3.1 Architecture index: 300...212
3.2 AVR macros: 301..213
3.3 AVR assembler: 302-312...213
3.4 ATmega328P definitions: 315...217
3.5 SMS PS/2 controller: 320-342..217
3.6 Arduino blinker: 345...224
3.7 Arduino SPI spitter: 350-351..225

4 8086..226
4.1 Architecture index: 300...226
4.2 8086 boot code: 301-309...226
4.3 8086 assembler: 311-318..229
4.4 8086 drivers: 320-324...232

5 6809..233
5.1 Architecture index: 300...233
5.2 6809 macros: 301..234
5.3 6809 boot code: 302-305...234
5.4 6809 HAL: 306-310..235
5.5 6809 assembler: 311-318..237
5.6 TRS-80 Color Computer 2: 320-324...239
5.7 6809 disassembler: 325-335..241
5.8 6809 emulator: 340-354..245

 5

5.9 Virgil's workspace: 360...250
6 6502..250

6.1 Architecture index: 300...250
6.2 6502 macros and consts: 301..251
6.3 6502 assembler: 302-307..251
6.4 6502 port macros: 309...252
6.5 6502 boot code: 310-320...253
6.6 6502 disassembler: 330-334..256
6.7 6502 emulator: 335-342..258
6.8 Virgil's workspace: 350-355..261
6.9 Apple IIe drivers: 360-362..263

6 Documentation Files

Documentation Files

1 General Documentation

1.1 Introduction to Collapse OS (intro.txt)
Collapse OS is a minimal operating system created to preserve
the ability to program microcontrollers through civilizational
collapse. Its author expects the collapse of the global supply
chain means the loss of our computer production capability. Many
microcontrollers require a computer to program them.

Collapse OS innovates by self-hosting on extremely tight resour-
ces and is thus (theoretically thus far) able to operate and be
improved in a world without modern computers.

Forth

This OS is a Forth. It doesn't adhere to any pre-collapse stand-
ard, but is pretty close to the Forth described in Starting
Forth by Leo Brodie. It is therefore the recommended introduct-
ory material to learn Forth in the context of Collapse OS.

If you don't have access to this book and don't know anything
about Forth, learning Collapse OS could be a rough ride, but
don't despair. There's a Forth primer in primer.txt Page 7 .

Documentation and self-hosting

Collapse OS is self-hosting, its documentation is not, that is,
Collapse OS cannot read this document you're reading. Text
blocks could, of course, be part of Collapse OS' blocks, but
doing so needlessly uses blocks and make the system heavier than
it should.

This documentation is expected to be printed before the last
modern computer of your community dies.

Virgil's workspaces

When you explore the contents of Collapse OS' code, you'll
notice "Virgil's workspace" littered around. Those blocks are
of no importance to you directly, but they contain code that I
use myself while I work from within Collapse OS.

They can provide great insights as to how tools are supposed to
be used.

1.1 Introduction to Collapse OS (intro.txt) 7

Where to begin?

If you're reading this and don't know where to begin, you're
likely to have access to a modern computer. The best place to
begin is to build the C VM of Collapse OS in /cvm. You can then
begin playing with it with the help of doc/usage and doc/impl.

When you're ready to move to real hardware, read doc/hw/intro.

Other topics in this documentation

* Dictionary of core Forth words (doc/dict)
* Design considerations (doc/design)
* Editing text (doc/ed)
* Editing binary memory (doc/me)
* Assembling binaries (doc/asm/intro)
* Disassembling binaries (doc/dis)
* Emulators (doc/emul)
* Programming AVR chips (doc/avr)
* Word tables (doc/wordtbl)
* How to read the code (doc/code/intro)
* Cross-compilation mechanisms (doc/cross)
* Architecture management (doc/arch)
* Bootstrap Collapse OS to a new system (doc/bootstrap)
* Hardware Drivers (doc/drivers)
* Sega Master System ROM signatures (doc/sega)
* Block Server (doc/blksrv)
* Self-hosting notes (doc/selfhost)
* Frequently asked questions (doc/faq)

1.2 Forth Primer (primer.txt)

First steps

Before you read this primer, let's try a few commands, just for
fun.

42 .

This will push the number 42 to the stack, then print the number
at the top of the stack.

4 2 + .

This pushes 4, then 2 to the stack, then adds the 2 numbers on
the top of the stack, then prints the result.

42 $8000 C! $8000 C@ .

8 1 General Documentation

This writes the byte "42" at address $8000 ($ prefix is for hex
notation), and then reads back that byte from the same address
and print it.

Interpreter loop

Forth's main interpeter loop is very simple:

1. Read a word from input.
2. Is it a number literal? Put it on the stack.
3. No? Look it up in the dictionary.
4. Found? Execute.
5. Not found? Error.
6. Repeat

Word

A word is a string of non-whitepace characters. We consider that
we're finished reading a word when we encounter a whitespace
after having read at least one non-whitespace character.

Character encoding

Collapse OS doesn't support any other encoding than 7bit ASCII.
A character smaller than $21 is considered a whitespace,
others are considered non-whitespace.

Characters above $7f have no special meaning and can be used in
words (if your system has glyphs for them).

Dictionary

Forth's dictionary link words to code. On boot, this dictionary
contains the system's words (look in dict.txt Page 28 for a list of
them), but you can define new words with the ":" word. For
example:

: FOO 42 . ;

defines a new word "FOO" with the code "42 ." linked to it. The
word ";" closes the definition. Once defined, a word can be
executed like any other word.

You can define a word that already exists. In that case, the new
definition will overshadow the old one. However, any word def-

1.2 Forth Primer (primer.txt) 9

ined *before* the overshadowing took place will still use the
old word.

: foo 42 . ;
: bar foo ;
: foo 43 . ;
foo \ prints 43
bar \ prints 42

Cell size

The cell size in Collapse OS is 16 bit, that is, each item in
stacks is 16 bit, @ and ! read and write 16 bit numbers.
Whenever we refer to a number, a pointer, we speak of 16 bit.

To read and write bytes, use C@ and C!.

Number literals

Traditional Forths often uses HEX/DEC switches to go from deci-
mal to hexadecimal parsing. Collapse OS has no such mode.

Straight numbers are decimals, numbers starting with "$" are
hexadecimals (example "$12ef"), char literals are single
characters surrounded by ' (example 'X'). Char literals can't be
used for whitespaces (conflicts with the concept of "word" as
defined above).

Parameter Stack

Unlike most programming languages, Forth execute words directly,
without arguments. The Parameter Stack (PS) replaces them. There
is only one, and we're constantly pushing to and popping from
it. All the time.

For example, the word "+" pops the 2 number on the Top Of Stack
(TOS), adds them, then pushes back the result on the same stack.
It thus has the "stack signature" of "a b -- n". Every word in
a dictionary specifies that signature because stack balance, as
you can guess, is paramount. It's easy to get confused so you
need to know the stack signature of words you use very well.

Return Stack

There's a second stack, the Return Stack (RS), which is used to
keep track of execution, that is, to know where to go back after

10 1 General Documentation

we've executed a word. It is also used in other contexts, but
this is outside of the scope of this primer.

Conditional execution

Code can be executed conditionally with IF/ELSE/THEN. IF pops
PS and checks whether it's nonzero. If it is, it does nothing.
If it's zero, it jumps to the following ELSE or the following
THEN. Similarly, when ELSE is encountered in the context of a
nonzero IF, we jump to the following THEN.

Because IFs involve jumping, they only work inside word defin-
itions. You can't use IF directly in the interpreter loop.

Example usage:

: FOO IF 42 ELSE 43 THEN . ;
0 FOO --> 43
1 FOO --> 42

Loops

Loops work a bit like conditionals, and there's 3 forms:

BEGIN..AGAIN --> Loop forever
BEGIN..UNTIL --> Loop conditionally
X >R BEGIN..NEXT --> Loop X times

UNTIL works exactly like IF, but instead of jumping forward to
THEN, it jumps backward to BEGIN.

NEXT decreases RS' TOS by one and if zero isn't reached, jumps
backward to BEGIN.

Why not have a FOR which would be the equivalent of ">R BEGIN"?
Because in many cases, maybe even most, the order of arguments
in PS is such that it's more convenient to perform the ">R" a
little earlier. Doing so right before BEGIN results in needless
stack juggling. The lack of FOR makes all NEXT loop look the
same, which helps overall readability.

You can use the word "LEAVE" to exit a NEXT loop early. When
used, it will finish the current loop and then stop looping when
NEXT is reached.

: foo 5 >R BEGIN R@ 3 = IF LEAVE THEN R@ . NEXT ;
foo \ prints 543

1.2 Forth Primer (primer.txt) 11

Exiting early

You can leave a word early with EXIT:

: foo 42 . EXIT 43 . ;
foo \ only 42 is printed

When you're inside a BEGIN..AGAIN or BEGIN..UNTIL, you can use
EXIT just fine, but if you're inside a NEXT loop, you have to
drop RS' TOS with R~ calling EXIT or else you have a messed up
Return Stack and all hell breaks loose.

Memory access and HERE

We can read and write to arbitrary memory address with @ and !
(C@ and C! for bytes). For example, "1234 $8000 !" writes the
word 1234 to address $8000. We call the @ and ! actions
"fetch" and "store".

There's a 3rd kind of memory-related action: "," (write). This
action stores value on PS at a special "HERE" pointer and then
increases HERE by 2 (there's also "C," for bytes).

HERE is initialized at the first writable address in RAM, often
directly following the latest entry in the dictionary. Explain-
ing the "culture of HERE" is beyond the scope of this primer,
but know that it's a very important concept in Forth. For examp-
le, new word definitions are written to HERE.

Linking names to addresses

Accessing addresses only with numbers can become confusing, us
humans often need names associated to them. You can do so with
CREATE. This word creates a dictionary entry of the "cell" type.
This word, when called, will put its own address on the stack.
You are responsible for allocating a proper amount of memory to
it.

For example, if you want to store a single 16-but number, you
would do "CREATE foo 2 ALLOT". You can then do stuff like
"42 foo ! foo @ . (prints 42)"

Cells can store more than just a number, they can hold
structures and array. Simply ALLOT appropriately and then use
this memory as you wish.

Another way to link a name to an address is VALUE. The "VALUE"
word takes a value parameter and creates a special "value" type

12 1 General Documentation

word. This word type always allocates 2 bytes of memory and when
called, instead of spitting its address, spits the 16-bit value
at that address.

You can change the number associated with a VALUE with TO (or
[TO] if you're inside a definition). Example:

42 VALUE foo foo . (prints 42)
43 TO foo foo . (prints 43)

VALUEs make more readable code in cases where the value is more
often read than written. It is also significantly faster.

If your VALUE never changes, you can also use CONSTANT, which is
created like a VALUE, but cannot be changed. Its advantage over
VALUE is that it's much faster.

DOER and DOES>

DOER and DOES> allow to bind data and behavior together in a
space-efficient way. Those words are called "does words" and,
when created, behave a bit like a cell (a CREATE word): it
pushes its own address to PS. But then, instead of just
continuing along, it executes its DOES> instructions. Example:

: printer DOER , DOES> @ . ;
42 printer foo
foo \ prints 42

DOER creates a special "does" entry and DOES> tells the latest
DOER entry where to jump for its behavior. The instructions
following DOES> are not executed when the DOER is defined, only
when it's executed. This execution always happen in a context
where the DOER's address in on PS. This is why, in the example
above, we call "@" before ".".

IMMEDIATE

We approach the end of our primer. So far, we've covered the
"cute and cuddly" parts of the language. However, that's not
what makes Forth powerful. Forth becomes mind-bending when we
throw IMMEDIATE into the mix.

A word can be declared immediate thus:

: FOO ; IMMEDIATE

That is, when the IMMEDIATE word is executed, it makes the
latest defined word immediate.

1.2 Forth Primer (primer.txt) 13

An immediate word, when used in a definition, is executed
immediately instead of being compiled. This seemingly simple
mechanism (and it *is* simple) has very wide implications.

For example, The words "(" and ")" are comment indicators. In
the definition:

: FOO 42 (this is a comment) . ;

The word "(" is read like any other word. What prevents us from
trying to compile "this" and generate an error because the word
doesn't exist? Because "(" is immediate. Then, that word reads
from input stream until a ")" is met, and then returns to word
compilation.

Words like "IF" and "DO" are all regular Forth words, but their
"power" come from the fact that they're immediate.

Starting Forth by Leo Brodie explains all of this in detail.
Read this if you can. If you can't, well, let this sink in for
a while, browse the dictionary (dict.txt Page 28) and try to
understand
why this or that word is immediate. Good luck!

1.3 Collapse OS usage guide (usage.txt)
If you already know Forth, start here. Otherwise, read
doc/primer first.

We begin with a few oddities in Collapse OS compared to tradi-
tional forths, then cover higher level operations.

Comments

Both () and \ comments are supported. The word "(" begins a
comments and ends it when it reads a ")" word. It needs to be a
word, that is, surrounded by whitespaces. "\" comments the rest
of the line.

Cell size and memory map

Cell size is hardcoded to 16-bit. Endian-ness is arch-dependent
and core words dealing with words will read-write according to
native endian-ness.

Memory is filled by 4 main zones:

1. Boot binary: the binary that has to be present in memory at

14 1 General Documentation

 boot time. When it is, jump to the first address of this bin-
 ary to boot Collapse OS. This code is designed to be able to
 run from ROM: nothing is ever written there.
2. Work RAM: As much space as possible is given to this zone.
 This is where HERE begins.
3. SYSVARS: Hardcoded memory offsets where the core system
 stores its things. It's $80 bytes in size. If drivers need
 more memory, it's bigger. See doc/impl for details.
4. PS+RS: Typically around $100 bytes in size. Their implemen-
 tation is entirely arch-specific. Overflows aren't checked,
 PS underflows are checked through SCNT.

Unless there are arch-related constraints, these zones are
placed in that order (boot binary at addr 0, PSP at $ffff).

Number Literals

Whenever a word is parsed in the interpreter loop, we first try
parsing the word as a number literal. There are 3 literal types.

1. A 100% digits number is parsed as a decimal (12345).
2. A string starting with $ is parsed as hexadecimal ($ab12).
3. A character inside quotes is parsed as that character ('A').

Strings and lines

Strings in Collapse OS are an array of characters in memory
associated with a length. There are no termination.

This length, when refering to that string in the different
string handling words, is usually passed around as a separate
argument in PS. It is common to see "sa sl", "sa" being the
string's address, "sl" being its length.

How that "sl" is encoded depends on the situation. For example,
the LIT" word, which writes the enclosed string and, at runtime,
yields "sa sl", is wrapped around a branch word (so that the
string isn't evaluated by forth) followed by 2 number literals.

When we refer to a "line", it's a string that is of size LNSZ,
a constant that is always 64. It corresponds to the size of the
input buffer and to the size of a line in a Block (16 lines per
block).

Because those lines have a fixed length, we sometimes want to
know the length of the actual content in it (for example, to
EMIT it). When we do so, for example in LNLEN, we go through the
whole line and check when is that last visible character, that
is, the last one that is higher than $20 (space). That's where

1.3 Collapse OS usage guide (usage.txt) 15

our line ends.

We don't use any termination character for lines, it's too
messy. Blocks might not have them, and when we want to display
lines in a visual mode (that is, always the full 64 characters
on the screen), we need complicated CR handling. It's simpler
to fill lines in blocks with spaces all the way.

Signed-ness

For simplicity purposes, numbers are generally considered
unsigned. For convenience, decimal parsing and formatting
support the "-" prefix, but under the hood, it's all unsigned.

This leads to some oddities. For example, "-1 0 <" is false.
To compare whether something is negative, use the "0<" word
which is the equivalent to "$7fff >".

Branching

Branching in Collapse OS is limited to 8-bit. This represents
64 word references (or a bit less if there are literals and
branches) forward or backward. While this might seem a bit tight
at first, having this limit saves us a non-negligible amount of
resource usage.

The reasoning behind this intentional limit is that huge
branches are generally an indicator that a logic ought to be
simplified. So here's one more constraint for you to help you
towards simplicity.

Interpreter and I/Os

Collapse OS' main I/O loop is line-based. INTERPRET calls WORD
which then iterates over the current "input buffer" (INBUF) for
characters to eat up. That input buffer is a 64 characters space
in SYSVARS where typed characters are buffered from KEY, but
that's not always the case.

During a LOAD, the input buffer pointer changes and points to
one of the 16 lines of the BLK buffer. WORD eats it up just the
same, but it ain't coming from KEY anymore. When the 16th line
is read, we come back to the regular program.

Back to KEY. It always yields a characters, which means it
blocks until it yields. It loops over KEY? which returns a
flag telling us whether a key is pressed, and if there is one,

16 1 General Documentation

the character itself.

KEY? is an alias which points to a driver implementing this
routine. It can also be overridden at runtime for nice tricks.
For example, if you want to control your computer from RS-232,
you can do "' RX<? 'KEY? !".

Interpreter output is unbuffered and only has EMIT. This word
can also be overriden, mostly as a companion to the *raison
d'etre* of your KEY? override.

Interpreting and compiling words

When the INTERPRET loop reads from INBUF, it separates its input
in words which yields chunks of characters.

Whenever we have a word, we begin by checking if it's a number
literal with PARSE. If yes, push it on the stack and get next
word. Otherwise, check if the word exists in the dictionary.
If yes, EXECUTE. Otherwise, it's a "word not found" error.

Compiling words with ":" follows the same logic, except that
instead of putting literals on the stack, it compiles them with
LITN and instead of executing words, it writes their address
down (except immediates, which are executed).

This "PARSE then FIND" order is the opposite of many traditional
Forths, which generally go the other way around. This is because
traditional forths often don't have hexadecimal prefixes for
their literals and the "PARSE then FIND" order would prevent the
creation of words like "face", "beef", cafe", etc. This is not
a problem we have in Collapse OS.

"PARSE then FIND" is faster because it saves us a dictionary
lookup when parsing a literal.

Native words

Native words are regular forth words wrapping binary executable
code.

With the proper assembler loaded in memory, you can compile
words that directly execute native code. Here's a z80 example:

CODE foo BC PUSH, BC 42 LDdi, ;CODE

See doc/asm/intro for more details.

1.3 Collapse OS usage guide (usage.txt) 17

VALUE, TO, CONSTANT

Cell access with @ becomes heavy in cases where a cell is read
at many places in the code and seldom written to. It is also
inefficient.

Collapse OS has a special "value" word type which is very
similar to a cell, but instead of pushing the cell's address to
PS, it reads the value at that address and pushes it to PS in
a much faster and lighter way than "MYVAR @". You create such
word with VALUE:

42 VALUE FOO
FOO . \ prints 42

Modifying that value is a bit less straightforward than with
a regular cell, but can be done with TO:

43 TO FOO
FOO . \ prints 43

To set a value in a compiled word, use [TO] instead of TO.

There's an additional word that facilitates the declaration of
multiple values: VALUES. You call it with the number of values
to declare an then type down their name, like this:

3 VALUES FOO BAR BAZ

All values are initialized to 0.

If you don't need to modify your value, it's better to use
CONSTANT instead. It's much faster because it spits native code
to push that value to PS directly. It's faster than a literal.

42 CONSTANT foo
2 CONSTS 43 bar 44 baz

Aliases

Sometimes, often for fulfilling protocols, we want to "plug" a
word into another, for example, we want FOO and BAR to mean the
same thing. Of course, you can do ": BAR FOO ;", but this
represents an annoying overhead, both in terms of speed and RS
space. In this case, you'll want to create an alias like this:

ALIAS FOO BAR

Which means "make BAR point to FOO". This generates a native

18 1 General Documentation

jump which is pretty much as low overhead as it can be.

Those aliases are read-only. Once created, they can't be
changed. If you want to use a word as an indirection, you need
to use execute like this:

: FOO ;
' FOO VALUE 'BAR
: BAR 'BAR EXECUTE ; \ BAR executes FOO
: BAZ ;
' BAZ TO 'BAR \ BAR EXECUTES BAZ

System aliases

Core words have 2 special aliases, which jump to an address
determined in their corresponding SYSVAR. These are EMIT and
KEY?.

Each of these system aliases have their corresponding "'" SYSVAR
address CONSTANT. You go through them to modify where the alias
jumps to. Example:

' RX<? 'KEY? !
' TX> 'EMIT !

System values

Most SYSVARS described in doc/impl have a CONSTANT corresponding
to their absolute address. For example, you get the value of
"NL" with "NL @" and set it with "NL !".

Some SYSVARS are very often used and necessitate faster access.
These SYSVARS are split in 2 words: the accessor and the
address. For example, we have HERE and 'HERE. HERE returns
HERE's value directly and 'HERE returns HERE's address.
Therefore, you get HERE with "HERE" and set it with "'HERE !".

The list of such SYSVARS is:

HERE CURRENT IN(IN>

BEGIN..NEXT

Most traditional Forths have DO..LOOP, Collapse OS has BEGIN..
NEXT. It only stores one number on RS instead of 2. It's a
number that is decremented at each NEXT and the loop exits when
that number is zero.

1.3 Collapse OS usage guide (usage.txt) 19

The initial value for this loop counter must be manually placed
on RS. Example: 42 >R BEGIN NEXT.

The A register

The A register is an out of stack temporary value that often
helps minimize stack juggling. Its location is arch- dependent,
but it's often in SYSVARS. On register-rich CPUs, it's a
register.

Access to it is fast, but its downside is that words using it
must be careful not to use words that also use the A register.
doc/dict indicate such words with *A*.

Dealing with performance bottlenecks

Because Collapse OS runs on multiple CPUs, dealing with bottle-
necks is a bit tricky. We want to avoid, in arch-independant
application code (VE, ME, assemblers, emulators), to maintain
bottleneck words in all supported architectures.

The way we deal with this situation is by declaring bottleneck
words as "back-overridable" with the word ?: (instead of :).

This word creates a new word only if the specified name doesn't
already exist in the dictionary. With this, what you can do is
optionally load "speedup words" for your arch, and then load
your app. Your sped-up version will superseed the default, slow
version and your bottlenecks will be faster. Example:

\ My super app
?: slowstuff (...) ;
: myapp (...) slowstuff (...) ;

\ My arch-specific speedup
CODE slowstuff (...) ;CODE

If you load the app without loading speedups, "slowstuff" will
be slow, but will work under all arches. If you load your
speedups first, then the forth version of "slowstuff" will never
be created and "myapp" will refer to the fast "slowstuff"
instead.

Mass storage through disk blocks

Collapse OS can access mass storage through its BLK subsystem.

20 1 General Documentation

See doc/blk for more information.

Useful little words

In Collapse OS, we try to include as few words as possible into
the cross-compiled core, making it minimally functional for
reaching its design goals.

However, in its source code, it has a section of what is called
"Useful little words" at B120 and you'll probably want to load
some of them quite regularly because they make the system more
usable.

Contexts

B122 provides the word "context" allowing multiple dictionaries
to exist concurrently. This allows you to develop applications
without having to worry too much about name clashes because
those names exist in separate namespaces.

A context is created with a name like this:

context foo \ creates context "foo"

When a context is created, it is "branched off" CURRENT as it
was at the moment the context was created.

To activate a context, call its name (in the case, "foo"). This
will do two things:

1. Save CURRENT in the previously active context.
2. Restore CURRENT to where it was the last time "foo" was
 active (or created).

Note that creating a context doesn't automatically activate it.

DOER and DOES>

In traditional forths, DOES> is often used with CREATE. Not in
Collapse OS. To use the DOES> word, you must pair it with DOER.
See doc/primer for details.

Code generation

The kernel has 3 words that generate native code and although
they're there as support for define words (:, CONSTANT, etc.),

1.3 Collapse OS usage guide (usage.txt) 21

they can be used for interesting thing.

These words are JMPi! CALLi! and i>! and have the same signature
of "n a -- len".

For example, let's say that you're debugging the kernel and want
to ruthlessly patch a word with another behavior you're trying
out. You could do:

' newword ' wordtopatch JMPi! DROP

And poof! wordtopatch is now an alias to newword.

1.4 Implementation notes (impl.txt)

Execution model

At the end of BOOT, we call ABORT which triggers our main loop,
which is in (main). It's very simple: Initialize input buffer,
then call INTERPRET.

INTERPRET itself is very simple: repeatedly call RUN1 (run one
word).

RUN1 implements this logic:

1. Read a word from input.
2. Is it a number literal? Put it on the stack.
3. No? Look it up in the dictionary.
4. Found? Execute.
5. Not found? Error.

Dictionary entry

A forth binary is, in its vast majority, a big dictionary of
words. The dictionary is a list of entries, the address of its
last entry being kept in CURRENT. A dictionary entry has this
structure:

- Xb name. Arbitrary long number of character (but can't be
 bigger than input buffer, of course). not null-terminated
- 2b previous entry
- 1b name size + IMMEDIATE flag (7th bit)
- The word content (see DTC explanation below)

The previous entry field is the address of the previous dict
entry, which is used when iterating over the dict.

The size + flag indicate the size of the name field, with the
7th bit being the IMMEDIATE flag.

22 1 General Documentation

The Direct Threaded Code model

Forths come in different flavors with regards to their execution
model and Collapse OS is a Direct Threaded Code (DTC) forth.

This means that each word (except CODE words, which directly
begin with native code) begins with a jump or call to a "word
type" routine, which then does its thing, optionally using the
words Parameter Field (PF, that is, the memory area following
the word routine jump).

At the heart of all those word types is the "next" routine,
defined at lblnext in all ports. This is the "beating heart" of
our system. Whenever it's called, it increases IP by 2 and then
jumps to the word referenced at IP-2. In other words, it
"continues" along the path of the currently active stream of
eXecution Tokens (XT). See "Executing a XT word" below.

These are the word types of Collapse OS:

native: nothing is done, native code is executed directly.

xt: eXecution Tokens. CALL lblxt which pushes IP to RS, pop PS
(the PC pushed during the CALL) into IP and does "next".

cell: CALL lblcell, which is the same as lblnext on "regular"
forths. On forths having a register assigned to TOS, we have
to pop that value and "properly" push it back to PS.

does: CALL lbldoes, which pops the pushed addr, inc by 2 (this
is the DOES data address) and push it back. Then, take the
original addr value, dereference it (it's the address of DOES>),
then jump to it as we would with any other word. The DOES> addr
contains a regular word handler (generally a xt handler).

value: CALL lblvalue, which pops addr from PS, dereferences it,
then push the value back to PS, then continue to lblnext.

Executing a XT (eXecution Tokens) word

At its core, executing a word is simply jumping to its wordref
address. Then, we let the word do its things. Some words are
special, but most of them are of the XT type, and that's their
execution that we describe here.

First of all, at all time during execution, the Interpreter
Pointer (IP) points to the wordref we're executing next.

1.4 Implementation notes (impl.txt) 23

When we execute a XT word, the first thing we do is push IP to
the Return Stack (RS). Therefore, RS' top of stack will contain
a wordref to execute next, after we EXIT.

At the end of every XT word is an EXIT. This pops RS, sets IP to
it, and continues.

A XT word is simply a list of wordrefs, but not all those
wordrefs are 2 bytes in length. Some wordrefs are special. For
example, a reference to (n) will be followed by an extra 2 bytes
number. It's the responsibility of the (n) word to advance IP
by 2 extra bytes.

To be clear: It's not (n)'s word type that is special, it's a
regular "native" word. It's the compilation of the (n) type,
done in LITN, that is special. We manually compile a number
constant at compilation time, which is what is expected in (n)'s
implementation. Similar special things happen in (br), (?br) and
(next).

For example, the word defined by ": FOO 345 EMIT ;" would have
an 8 bytes PF: a 2b ref to (n), 2b with $0159, a 2b ref to EMIT
and then a 2b ref to EXIT.

When executing this word, we first set IP to PF+2, then exec
PF+0, that is, the (n) reference. (n), when executing, reads IP,
pushes that value to PS, then advances IP by 2. This means that
when we return to the "next" routine, IP points to PF+4, which
next will execute. Before executing, IP is increased by 2, but
it's the "not-increased" value (PF+4) that is executed, that is,
EMIT. EMIT does its thing, doesn't touch IP, then returns to
"next". We're still at PF+6, which then points to EXIT. EXIT
pops RS into IP, which is the value that IP had before FOO was
called. The "next" dance continues...

Endian-ness

Unless explicitly noted, all 2 bytes numbers are written in the
CPU's native endian-ness. For example, the Z80 and 8086 are
little-endian, so they will write the low order byte before the
high order one, but the 6809 is big-endian, so it will do the
opposite.

Stack management

In all supported arches, The Parameter Stack and Return Stack
tops are tracked by a register assigned to this purpose. For
example, in z80, it's SP and IX that do that. The value in those
registers are referred to as PS Pointer (PSP) and RS Pointer

24 1 General Documentation

(RSP).

The way those stacks are managed are arch-specific and opaque.
Our only "meta-access" to stacks are through SCNT and RCNT which
give us counts for each stacks.

Register roles

In the code, many registers have special meaning, and it's
crucial to keep this in mind when reading or writing native
code. As written above, we reserve a register for PSP and RSP,
but also for IP (Interpreter Pointer). You can see what register
is reserved for what in the cpu-specific document of doc/code/.

With CPUs that have very few registers, we might end up using
memory for IP, but it greatly impacts speed.

With CPUs that have a lot of registers, we can reserve some for
stack elements. For example, on the z80, BC is reserved for PS'
Top Of Stack. It makes all of the native code a bit weird
because pushes and pops are no longer this clean, symmetrical
set of operations, but gains (both in speed and binary size) are
significant, especially with words that have a symmetrical stack
signature (same number of stack elements before and after
execution).

Stack underflow and overflow

When words pop and push from the stack, nothing stops them. If
the stack goes out of bounds, bad things happen.

When a pop results in the stack pointer going out of bounds,
it's a "stack underflow". We could check, in each native word,
whether the stack is big enough to execute the word, but these
checks are expensive.

Instead, what we do is that we check for stack underflow in the
INTERPRET loop after each EXECUTE, through the word "STACK?".
If SCNT < 0, it's a stack underflow.

Would a word like ": foo DROP 42 ;" trigger an underflow if
executed on an empty PS? Well, no. That's the tradeoff. In
exchange for simplicity and speed, we don't catch all underflow
errors.

We don't check RS for underflow because the cost of the check
is significant and its usefulness is dubious: if RS isn't
tightly in control, we're screwed anyways, and that, well
before we reach underflow.

1.4 Implementation notes (impl.txt) 25

Overflow condition happen when RS or PS outstep their bounds
during a push. That condition is not checked because it's too
expensive for what it's worth.

Overflow happens much less often than underflow. However, when
it happens, it can means that your RS gets overwritten and will
catastrophically crash your machine.

When you know you have a deep stack, or before you do fancy
recursion, make sure you know the state of your stack well.
You can use .S for this.

System variables

There are some core variables in the core system that are
referred to directly by their address in memory throughout the
code. The place where they live is configurable by the SYSVARS
constant in xcomp unit, but their relative offset is not. In
fact, they're mostly referred to directly as their numerical
offset along with a comment indicating what this offset refers
to.

SYSVARS occupy $60 bytes in memory in addition to driver mem-
ory, which typically follows SYSVARS.

This system is a bit fragile because every time we change those
offsets, we have to be careful to adjust all system variables
offsets, but thankfully, there aren't many system variables.
Here's a list of them:

SYSVARS
+00 IOERR
+02 CURRENT
+04 HERE
+06 A register
+08 'LN<
+0a NL characters
+0c RESERVED
+0e 'EMIT
+10 'KEY?
+12 CURWORD
+16 RESERVED
+18 N register
+1a RESERVED
+1c IN(*
+1e IN>
+20 INBUF
+60 DRIVERS

CURRENT points to the last dict entry.

26 1 General Documentation

HERE points to current write offset.

IN> and INBUF: See "Input Buffer" below.

LN< is called whenever the stream needs to be fed with a new
line in IN(. Generally points to RDLN, but is overridden during
LOAD.

CURWORD is a 4 bytes buffer containing a reference to the word
last read with WORD. First byte is length, the next 2 are the
address to the character string, and the last is a "don't read"
flag.

IOERR: When an error happens during I/Os, drivers can set this
to indicate an error. For example, the AT28 driver sets this
when it detects write corruption. Has to be reset to zero man-
ually after an error.

NL is 2 bytes. NL> spits them, MSB first. If MSB is zero, it's
ignored. For example, $0d0a spits CR and then LF.

'KEY? and 'EMIT default to (key?) and (emit) but can be
overwritten to other routines.

The N register is like the A register but only accessible from
native code. You can then be sure that by using it you will not
break some high-level words.

DRIVERS section is reserved for recipe-specific drivers.

RESERVED sections are unused for now.

Initialization sequence

The first thing we do on powerup is to jump past the stable ABI
and into the "early init" routine, written in native code. This
does 2 things: initialize PSP and RSP and then jump to BOOT
using the word offset recorded in the stable ABI.

Then, BOOT does this:

1. Initialize CURRENT and HERE from stable ABI.
2. Initialize system aliases and values in this way:
 EMIT -> (emit)
 KEY? -> (key?)
 NL -> CRLF
3. Call INIT, which is system-specific. This usually
 initializes drivers.

1.4 Implementation notes (impl.txt) 27

4. Print "Collapse OS"
5. Call ABORT. See Execution Model above for the rest.

(main) is separate from BOOT because this word is also called by
QUIT. This way, when we ABORT during a LOAD (for example), we
go back to a usable prompt instead of being stuck in an input
nightmare maze.

Stable ABI

The Stable ABI lives at the beginning of the binary and prov-
ides a way for Collapse OS code to access values that would
otherwise be difficult to access. Here's the complete list of
these references:

04 BOOT addr 06 CURRENT 08 LATEST
0a (main) addr

BOOT and (main) exist because they are referred to
before those words are defined (in core words).

CURRENT and LATEST are initial values for CURRENT and HERE
in SYSVARS.

All Collapse OS binaries, regardless of architecture, have
those values at those offsets of them. Some binaries are built
to run at offset different than zero. This stable ABI lives at
that offset, not 0.

Input buffer (INBUF)

As indicated above, the Input Buffer lives in SYSVARS and is
$40 bytes in length (configured by LNSZ).

This buffer contains a stream of characters that, unlike
regular strings, is *not* sized. It is also *not* terminated by
any kind of character.

Words IN(and IN) indicate its bounds and IN> is a pointer (in
absolute address) pointing to the current character being read.

This buffer will generally be filled by RDLN and then consumed
by IN<. These words take care of not stepping out of bounds.

When you type characters in the prompt, it's RDLN that handles
it. When you type CR (or LF), it stops reading and begins
feeding IN<. If you type LNSZ characters without typing CR, an
additional CR will be fed to IN< after INBUF has gone through.

28 1 General Documentation

In rare occasions, you need to know when you've reached the end
of INBUF, for example in ED where some words read "rest of the
buffer". In these cases, you can use IN<? instead of IN< which,
when the end of INBUF is reached, instead of calling RDLN, will
simply return 0.

1.5 Dictionary (dict.txt)
List of words defined in arch-specific boot code and core words.

Glossary

Stack notation: "<stack before> -- <stack after>". Rightmost is
top of stack (TOS). For example, in "a b -- c d", b is TOS
before, d is TOS after. "R:" means that the Return Stack is
modified.

Some words have a variable stack signature, most often in pair
with a flag. These are indicated with "?" to tell that the argu-
ment might not be there. For example, "-- n? f" means that "n"
might or might not be there.

Some words consume contents from input and this is indicated by
"x", "y" and "..." elements next to the word itself, not in the
stack signature. For example, ": x ... ;" means that the word
":" will consume an element "x" (which is usually explained in
the description), followed by an arbitrary length of contents,
which is ended by ";".

Word references (wordref): When we say we have a "word
reference", it's a pointer to a word's entry point. That is,
making native jump to the address contained in the wordref will
execute the word.

For example, the address that "' DUP" puts on the stack is a
word reference to DUP. See doc/impl for details.

"*I*" in description indicates an IMMEDIATE word.
"*A*" in description indicates A register usage.

Symbols

Across words, different symbols are used in different contexts,
but we try to be consistent in their use. Here's their defini-
tions:

! - Store
@ - Fetch
$ - Initialize

1.5 Dictionary (dict.txt) 29

^ - Arguments in their opposite order
< - Input
> - 1. Pointer in a buffer 2. Opposite of "<".
(- Lower boundary
) - Upper boundary
' - Address of
* - Word indirection (pointer to word)
? - "Is it ...?" or "do ... if flag"
[...] - Indicates immediateness

Placement of those symbols is often important. In I/O-related
words for example, symbold to the left of the words refer to
input and to the right, output. For "?", placement at the right
refer to the first form, placement at the left refer to the
second form.

System variables

See doc/usage for details. These ones have a "'" pair:

BLK> Currently selected Block.
CURRENT Address of the last word of the dictionary.
HERE Addr of next available space in dict
IN(Beginning of the input buffer.
IN> Current pos in input buffer.

These ones are addresses and must be accessed with @ and !:

IOERR Nonzero when an IO error occurred in some drivers.
NL 1 or 2 chars to spit during NL>, MSB first. If MSB is
 0, it's ignored.
LN< Routine that feeds lines to the interpreter. Generally
 RDLN.
BLKDTY Whether current block is dirty

Values and aliases

TO x n -- Write n to value x.
[TO] x n -- *I*. Same as TO.
VAL! n a -- Write n to value a.

Entry management

'? x -- f Find x it in dict. If found, f=1. Otherwise, f=0.
' x -- w Push addr of word x to w. If not found, aborts.
['] x -- *I* Like "'", but spits the addr as a number
 literal. If not found, aborts.

30 1 General Documentation

FIND sa sl -- w? f
 Find "sa sl" in dict. If found, w=wordref, f=1.
 Otherwise, f=0.
FORGET x -- Rewind the dictionary (both CURRENT and HERE) up
 to x's previous entry.

Defining words

: x ... ; -- Define a new word.
ALIAS x y -- Define an alias y with a starting value of x
CREATE x -- Create cell named x. Doesn't allocate.
CODE x -- Define a new native word.
[COMPILE] x -- *I* Compile word x and write it to HERE.
 IMMEDIATE words are *not* executed.
COMPILE x -- *I* Meta compiles: write wordrefs that will
 compile x when executed.
CONSTANT x n -- Create a constant x with value n.
CONSTS ... n -- Creates n new constants. See usage.txt Page 13 .
VALUE x n -- Creates cell x that when called pushes its
 value.
VALUES ... n -- Create a serie of n values. See usage.txt Page 13
DOER -- See doc/primer
DOES> -- See doc/primer
IMMEDIATE -- Flag the latest defined word as immediate.
LITN n -- Write number n as a literal.

Code generation

JMPi! n a -- len Write a native jump to n at address a
CALLi! n a -- len Write a native call to n at address a
i>! n a -- len Write a native push of number n to PS at
 address a

"len" is the length in bytes of the written binary contents.

Flow

Note that flow words can only be used in definitions. In the
INTERPRET loop, they don't have the desired effect because each
word from the input stream is executed immediately. In this
context, branching doesn't work.

f IF A ELSE B THEN: if f is true, execute A, if false, execute
B. ELSE is optional.
[IF] .. [THEN]: Meta-IF. Works outside definitions. No [ELSE].
BEGIN .. f UNTIL: if f is false, branch to BEGIN.
BEGIN .. AGAIN: Always branch to BEGIN.

1.5 Dictionary (dict.txt) 31

n >R BEGIN .. NEXT: Loop n times.

(-- *I* Comment. Ignore input until ")" is read.
\ -- *I* Line comment. Ignore input until EOL.
[-- *I* Begin interpretative mode. In a definition,
 execute words instead of compiling them.
] -- End interpretative mode.
ABORT -- Resets PS and RS and returns to interpreter.
ABORT" ..." -- *I* Compiles a ." followed by a ABORT.
EXECUTE a -- Execute wordref at addr a
INTERPRET -- Main interpret loop.
LEAVE -- In a DO..LOOP, exit at the next LOOP call.
QUIT -- Reset RS, return to interpreter prompt.

Parameter Stack

DROP a --
DUP a -- a a
?DUP DUP if a is nonzero
NIP a b -- b
OVER a b -- a b a
ROT a b c -- b c a
ROT> a b c -- c a b
SWAP a b -- b a
TUCK a b -- b a b
2DROP a a --
2DUP a b -- a b a b

Return Stack

>R n -- R:n Pops PS and push to RS
R> R:n -- n Pops RS and push to PS
R@ -- n Copy RS TOS to PS
R~ R:n -- Drop RS TOS

Stacks meta

.S -- *A* Prints stack information as well as the contents
 of PS.
SCNT -- n Size of PS in bytes
RCNT -- n Size of RS in bytes

Memory

@ a -- n Set n to value at address a
! n a -- Store n in address a

32 1 General Documentation

, n -- Write n in HERE and advance it.
+! n a -- Increase number at addr a by n.
[]= a1 a2 u -- f Compare u bytes between a1 and a2. Returns
 true if equal.
[C]? c a u -- i Look for c in the u bytes at addr a. If
 found, return index i. Otherwise, i=-1.
C@ a -- c Set c to byte at address a
C@+ a -- a+1 c Fetch c from a and inc a.
C! c a -- Store byte c in address a
C!+ c a -- a+1 Store byte c in a and inc a.
C, b -- Write byte b in HERE and advance it.
nC, n -- Parse next n words and write them as
 bytes.
ALLOT n -- Move HERE by n bytes.
ALLOT0 n -- *A* ALLOT and fill with zero.
FILL a n b -- *A* Fill n bytes at addr a with val b.
L, n -- Write n in little-endian regardless of
 native endianess (L=LSB first)
M, n -- Write n in nig-endian regardless of
 native endianess (M=MSB first)
MOVE a1 a2 u -- *A* Copy u bytes from a1 to a2, starting
 with a1, going up.
MOVE, a u -- *A* Copy u bytes from a to HERE.

NOTE: on some arches, []= and [C]? don't support u>$ff. We don't
use these words with u>$ff in Collapse OS code. If you do so,
make sure your arch is OK with it.

A register

>A n -- A:n
A> A:n -- n A:n
R>A R:n -- A:n
A>R A:n -- R:n A:n
A+ A:n -- A:n+1
A- A:n -- A:n-1
AC@ A:a -- c A:a
AC! c A:a -- A:a
AC@+ A:a -- c A:a+1
AC!+ c A:a -- A:a+1

Arithmetic / Bits

+ a b -- a+b
- a b -- a-b
-^ a b -- b-a
* a b -- a*b
/ a b -- a/b
<< n -- n Shift n left by one bit

1.5 Dictionary (dict.txt) 33

<<8 n -- n Shift n left by 8 bits
>> n -- n Shift n right by one bit
>>8 n -- n Shift n right by 8 bit
L|M n -- lsb msb Split n word in 2 bytes, MSB on TOS
1+ n -- n+1
1- n -- n-1
MOD a b -- a%b
/MOD a b -- r q r:remainder q:quotient
AND a b -- a&b
OR a b -- a|b
XOR a b -- a^b
LSHIFT n u -- n Shift n left by u bits
RSHIFT n u -- n Shift n right by u bits

Logic

= n1 n2 -- f Push true if n1 == n2
< n1 n2 -- f Push true if n1 < n2
> n1 n2 -- f Push true if n1 > n2
>= n1 n2 -- f Push true if n1 >= n2
<= n1 n2 -- f Push true if n1 <= n2
0< n -- f Push true if n-as-signed is negative
0>= n -- f Push true if n-as-signed is positive
NOT f -- f Push the logical opposite of f. Always 0 or 1.

Strings and lines

See doc/usage for the concepts of strings and lines.

LIT" ..." -- Read following characters and write to HERE as
 a string literal.
LNLEN a -- n Return length of line at a, the line ending at
 the last visible char of it.
S= sa1 sl1 sa2 sl2 -- f
 Returns whether string s1 == s2.

I/O

. n -- Print n in its decimal form

.x n -- Print n's LSB in hex form. Always 2
 characters.
.X n --
 Print n in hex form. Always 4 characters.
 Numbers are never considered negative. "-1 .X" --> ffff
," ..." -- Write ... to HERE
." ..." -- *I* Compiles string literal ... followed by a
 call to STYPE.

34 1 General Documentation

CURWORD -- sa sl Yield the last read word (see WORD).
EMIT c -- Spit char c to output stream
EMITLN a -- *A* EMIT line at addr a
IN< -- c Read one char from buffered input, if end of
 input is reached, read new line.
IN<? -- c-or-0 Read from buffered input if its end hasn't
 been reached, 0 otherwise.
IN(-- a Beginning of input buffer.
IN) -- a End of the input buffer, exclusive.
IN$ -- Flush input buffer
KEY? -- c? f Polls the keyboard for a key. If a key is
 pressed, f is true and c is the char. Other-
 wise, f is false and c is *not* on the stack.
KEY -- c Get char c from direct input.
NL> -- Emit newline
PARSE sa sl -- n? f *A*
 Parses string s as a number and push the result in n if
 it can be parsed, with f=1. Otherwise, push f=0.
PC! c a -- Spit c to port a
PC@ a -- c Fetch c from port a
SPC> -- Emit space character
STYPE sa sl -- *A* EMIT all chars of string.
WAITW sa sl -- Call WORD until we get the same string as
 sa sl.
WORD -- sa sl Read one word from buffered input and push it.
 That word is a string (begins with a length
 byte).
WORD! sa sl -- The next WORD call will not read from input
 and yield this string instead.

These ASCII consts are defined:
EOT BS CR LF SPC

KEY? and EMIT are aliases to (key?) and (emit) (see doc/drivers)
KEY is a loop over KEY?.

NL> spits CRLF by default, but can be configured to spit an
alternate newline char. See impl.txt Page 21 .

BLK subsystem (see doc/blk)

\S -- Interrupts LOAD of current block.
BLK(-- a Beginning addr of blk buf.
BLK) -- a Ending addr of blk buf.
BLK@ n -- *A* Read block n into buffer and make n active.
BLK! -- *A* Write currently active block, if dirty.
COPY s d -- *A* Copy contents of s block to d block.
FLUSH -- Write current block to disk if dirty and inval-
 idates current block cache.
LIST n -- *A* Prints the contents of the block n on

1.5 Dictionary (dict.txt) 35

 screen in the form of 16 lines of 64 columns.
LOAD n -- *A* Interprets Forth code from block n
LOADR n1 n2 -- *A* Load block range between n1 and n2,
 inclusive.
WIPE -- *A* Empties current block

Note: Most BLK words don't actually use the A register them-
selves, but we want to allow BLK drivers to make usage of it,
so you *should* guard yourself again A changes when using those.

RX/TX subsystem (see doc/rxtx)

RX<? -- c? f If a char is available on RX, return it in c
 with f=1. Otherwise, f=0.
RX< -- c Block until a char is available in RX.
RX<< -- Consume RX<? and drop result until there's
 nothing to be received.
RX[-- Replace KEY? with RX<?.
]RX -- Put back the old KEY? handler.
TX> c -- Spit c to TX, blocking until it can do it.
TX[-- Replace EMIT with TX>.
]TX -- Put back the old EMIT handler.

Other

BOOT -- Boot back to a fresh system.
CRC16 c b -- c Computes byte b into c, a 16-bit CRC with a
 $1021 polynomial (XMODEM CRC).
DUMP n a -- *A* Prints n bytes at addr a in a hexdump
 format. Prints in chunks of 8 bytes. Doesn't do
 partial lines. Output is designed to fit in 32
 columns.
NOOP -- Do nothing.
TICKS n -- Wait for approximately n*100 microseconds.
 Don't use with n=0.

Loaders

These words load the related application from blocks:

ARCHM Arch-specific loader words and macros
ED Block Editor
VE Visual Editor
ME Memory Editor
RSH Remote shell and XMODEM implementation
XCOMP Cross-compilation tools

36 1 General Documentation

Kernel internals

Some words from the kernel are designed to be internal but
ended up being used in "userland". Let's document them:

_bchk n -- n Checks whether n is a valid 8-bit signed
 branching offset, that is, in the range -128
 to 127. If not, abort with "br ovfl".

1.6 The BLK subsystem (blk.txt)
Disk blocks are Collapse OS' main access to permanent storage.
The system is exceedingly simple: blocks are contiguous
chunks of 1024 bytes each living on some permanent media such
as floppy disks or SD cards. They are mostly used for text,
either informational or source code, which is organized into
16 lines of 64 characters each.

Blocks are referred to by number, 0-indexed. They are read
through BLK@ and written through BLK!. When a block is read,
its 1024 bytes content is copied to an in-memory buffer
starting at BLK(and ending at BLK). Those read/write
operations are often implicit. For example, LIST calls BLK@.

When a word modifies the buffer, it sets the buffer as dirty
by calling BLK!!. BLK@ checks, before it reads its buffer,
whether the current buffer is dirty and implicitly calls BLK!
when it is.

The index of the block currently in memory is kept in BLK>.

Most blocks contain code. That code can be interpreted through
LOAD. LOAD operations cannot be nested, that is, you can't call
LOAD from a block or you can't call a word that calls LOAD from
a block.

Exploring blocks

Blocks 0 and 1 in Collapse OS are text blocks describing the
whole contents in all blocks, organized in sections. Sections
are typically 5, 10 or 20 blocks in size.

The first line of each block is often a comment describing the
contents of the block. To take advantage of this, we have the
INDEX word which prints the first line of each block in a range.

So, for example, if you see in the master index that Collapse OS
core words spans from B210 to B229 and you want to quickly find
a word in it, you'd run "210 229 INDEX".

1.6 The BLK subsystem (blk.txt) 37

LOADing applications

The first block of each section (a section often contains an
application) will typically contain loading instructions. You
can work your way around following these instructions, or you
can take the easy way: application loaders. The BLK subsystem
has convenience words for loading applications at B234.

For example, it has the "VE" word which loads VE. Therefore, on
a freshly booted system, if you want to run VE, simply type
"VE". IF VE isn't loaded yet, it will LOAD. If it is loaded, it
will run.

How blocks are organized

Organization of contiguous blocks is an ongoing challenge and
Collapse OS' blocks are never as tidy as they should, but we
try to strive towards a few goals:

1. B0 and B1 are for a master index of blocks.
2. B2-B100 are for assemblers.
3. B100-B199 are for programs loaded at runtime.
4. B200-B299 are for arch-independent cross-compiled code, inc-
 luding xcomp tools.
5. B300+ is for arch-specific code.

In the POSIX package of Collapse OS, arch-specific code is kept
in separate ".blk" files so that depending on the arch being
built, the content of B300+ varies.

B300 is always an "arch-specific" master index and B301 is
always the "macros" block for this architecture (the block
you want to load before XCOMPH during bootstrapping). This block
defines all subsequent loader words for this archtecture.

When collapse comes and you want to build your final Collapse OS
media, you'll probably want to keep all arch-specific contents
at once. You will then need to organize those blocks yourself in
the way you see fit.

The BLK subsystem enables disk access and provides all disk-
related words (LOAD, LIST, FLUSH, etc.). See doc/usage.txt Page 13 for
usage.

Including the BLK subsystem in a kernel

Before assembling, this requires 3 words:

38 1 General Documentation

BLK_MEM: where the 1024 bytes block buffer will live as well as
 BLK variables. The total size used is $409 bytes.

(blk@) blkno dest -- Reads blkno into dest (almost always BLK(
 is passed there).
(blk!) blkno dest -- Write contents of buffer at dest into
 blkno.

Then, you can call BLKSUB in your xcomp unit.

These are the variables defined in BLKSUB:

BLK> Currently active block number
BLKDTY Whether current block is dirty (needs to be saved on
 FLUSH). Nonzero means dirty.
BLKIN> Upon LOAD, old IN> value is saved there so that when
 LOAD is finished, we can restore it and continue
 interpreting INBUF where we were.
BLK(Address of the BLK buffer.
BLK) Address where the BLK buffer ends.

Some subsystems provide an implementation to the BLK protocol:

* SD card subsystem (doc/sdcard)

1.7 RX/TX subsystem (rxtx.txt)
If your machine has a serial device (often a RS-232 device),
adding the RX/TX subsystem to your kernel can open interesting
possibilities. That subsystem is added through RXTXSUB during
xcomp and requires the following words to be defined by drivers:

RX<? -- c? f Check if a character has been received by the
 device. If it has, f=1 and c is the received
 char. Otherwise, f=0.
TX> c -- Transmit character c to the device.

From these words, The RX/TX subsystem them defines a handful of
extra words, which are listed in the "RX/TX" section of
doc/dict.txt Page 28 .

Some of those words deserve special mention, such as TX[]TX and
RX[]RX. What those words do is that they temporarily replace
EMIT and KEY? (respectively) to facilitate some processing.

Example: let's say that you have a number on PS that you'd like
to spit, hex-formatted, to TX. What do you do? Re-implement .X
and replace EMIT with TX>? Well, you could so that. Or... you
could do "TX[.X]TX".

Other example: You want to give total control of your computer

1.7 RX/TX subsystem (rxtx.txt) 39

to the RX/TX link. What do you do? "TX[RX[". Your keyboard and
screen are now unresponsive, RX/TX has control now. Want to go
back? "]TX]RX" (from the serial link, of course).

RX/TX tools

Collapse OS also has tools at B10 that you can load at runtime.
The loader words for these tools is "RXTX". These tools include:

* A remote shell
* A way to upload binary contents to a Collapse OS remote.
* A XMODEM implementation.
* A blksrv client (see doc/blksrv).

Remote shell

You can control a remote system from Collapse OS using the
"rsh" (--) word.

When you run "rsh", it will repeatedly poll RX<? and emit
whatever is coming from there and at the same time, poll KEY?
and push whatever key you type to TX>.

You can stop the remote shell by typing CTRL+D (ASCII 4).

Uploading data

You can also upload data to your remote if it runs Collapse OS.
Use the "rupload" word. It takes a local address, a remote
address and a byte count. For example, "$8000 $a000 42" copies'
42 bytes from the local machine's $8000 address and uploads it
to the remote's $a000 address.

When you execute the word, it's doing to remotely (and tempo-
rarily) define helper words and that's going to result in some
gibberish on the screen. Then, it's going to start spitting "."
characters, one per byte uploaded. After that, it's going to
spit two checksum: one for the data received by the remote and
one for the data sent locally. If they match, you're all good.

XMODEM

XMODEM is a simple protocol for reliable data transfer over a
serial line. The reference document for it is titled:

XMODEM/YMODEM PROTOCOL REFERENCE, A compendium of documents

40 1 General Documentation

describing the XMODEM and YMODEM File Transfer Protocols

By Chuck Forsberg

On POSIX systems, the tool generally used for it is "lrzsz".
To use with Collapse OS, you'll want to use the rx/sx versions
of it.

Words defined in RXTX that implement the XMODEM protocol are:

MEM>TX a u -- Send u bytes to TX from addr a.
BLK>TX b1 b2 -- Send contents of block range b1-b2
RX>MEM a -- Receive packets into a until EOT
RX>BLK -- Receive packets into blocks, starting with
 currently active BLK>, increasing by one when-
 ever a block is filled.

As it is now, the XMODEM implementation is a bit fragile, but
all the important parts are there. They just need to be
solidified.

blksrv client

RXTX tools also have words to fetch blocks from and push blocks
to a blk server (see doc/blksrv). These words are:

blksrv< blk -- Receive remote "blk" from and put it in
 currently active block.
blksrv> blk -- Send currently active block to remote "blk".

1.8 Block Server (blksrv) (blksrv.txt)
In POSIX tools/, there's a program called "blksrv" which is a
"block server", that is, a program that sends and receives
blocks to/from a serial link.

Admittedly, the goal of this program is very much pre-collapse,
but we can imagine some post-collapse uses for such a setup too:
I use it to facilitate the synchronisation between my retro
machines and my modern environment.

At some point during Collapse OS' development, I began
developing Collapse OS from within Collapse OS from a retro
machine. It worked well, but because I published Collapse OS on
something we called the "internet", I needed to fetch my work
from my retro machine and into my modern machine.

I tended to do this only once in a while, and even worse,
sometimes my modern machine also had some changes on it. Merging

1.8 Block Server (blksrv) (blksrv.txt) 41

was complicated.

Also, because I tended to not remember exactly what I had
modified recently, I tended to transfer the whole blkfs each
time (to be sure), which is a bit time consuming on a 9600 bauds
link.

The idea with the Block Server is that the retro machine is "in
charge". It controls what to push/pull and when, so the modern
machine is a slave to it. Because it's easy to do so while
working on the retro machine, then I can do it more often and
avoid tricky merging problems down the road.

How it works

Very simple. There are 2 commands: Get and Put. The client (the
retro machine) initiates a command by sending a 'G' or a 'P'
followed by a formatted 16-bit hex number (this means 4 chars).

If it's a 'G' command, the server reads the asked block from its
local file and spits its 1024 bytes as-is. Then, it spits the
checksum of those 1024 bytes as a hex-formatted 16-bit number.

The checksum is a simple sum of all bytes.

If it's a 'P' command, then it's the client that sends its block
in the same fashion. If the checksum matches, it writes it to
its local file.

The client and the server don't tell each other of checksum
failures or anything. You're supposed to see those because you
have access to both ends locally. At least that's the idea.

You remember when I talked about spitting contents as-is? You're
thinking that it could possibly cause transmission problems in
the ASCII control chars range, don't you? Well yes, it can, but
this system is designed to send text blocks. Those blocks don't
contain ASCII control chars.

So, don't transmit binary data through this system or you're
going to have a bad time.

1.9 Design considerations (design.txt)
The primary goals of Collapse OS are to:

* Run on minimal and improvised machines.
* Interface through improvised means.
* Edit text and binary contents.
* Compile assembler source for a wide range of MCUs and CPUs.

42 1 General Documentation

* Read and write from a wide range of storage devices.
* Assemble itself and deploy to another machine.
* Achieve this with as little external means as possible, for
 example, internet or a functional global supply chain.

It follows, from these goals, the following priorities in code
qualities:

* Simplicity
* Compactness
* Speed

It is paramount that this project stays understandable in its
whole by a single person so that it can be adapted to as many
contexts as possible.

However, it also needs to stay compact so that it can run on as
many machines as possible, however small. So far, there's a few
hard limits that have been identified:

* The ROM for the RC2014 port with SD card has to fit in 8K.
* Self-hosting must stay possible on the Sega Master System with
 its 8K of RAM.

If these limits are respected, we consider the compactness crit-
eria met.

Lastly, Collapse OS should be usable on its target machines. If
it's slow, it's less usable. Efforts should be made towards this
as long as it doesn't break the two other constraints.

That last part is hard to remember. When going through the code,
there are some obvious inefficiencies and when we look at them,
the mind immediately thinks of ways to smooth them out. But
those ways add complexity. If the solution you're thinking about
adds significant complexity compared to the speedup, then it has
likely been considered already and dismissed.

The idea behind this is that those easy pickings can easily be
picked by the post-collapse user. Simplicity is paramount and,
besides, why not leave this pleasure to them, those poor souls?

1.10 Editing text (ed.txt)
Collapse OS has 2 levels of text editing capabilities: command-
based editing and visual editing. This 2-fold application is
located at B100.

The command-based editor is a "traditional" Forth text editor as
described in Starting Forth by Leo Brodie. This editor can be
loaded with "ED".

1.10 Editing text (ed.txt) 43

The visual editor is a full-blown application that takes over
the interpreter loop with its own key interpreter and takes over
the whole screen using the Grid ubsystem. We call this editor
the "Visual Text Editor" and can be loaded with "VE" once loaded
it can be ran with "VE".

When available, the Visual editor is almost always preferable to
the command-line editor. It's much more usable. We have the
command line editor around because not all machines can use the
Grid subsystem. For example, a machine with only a serial
console can't.

Command-line editor

The command-line editor augments the built-in word LIST with
words to modify the block currently being loaded. Block saving
happens automatically: Whenever you load a new block, the old
block, if changed, is saved to disk first. You can force that
with FLUSH.

Editing works around 3 core concepts: cursor, insert buffer
(IBUF), find buffer (FBUF).

The cursor is simply the character index in the 64x16 grid. The
word T allows you to select a line. For example, "3 T" selects
the 3rd line. It then prints the selected line with a "^" char-
acter to show your position on it. After a T, that "^" will
always be at the beginning of the line.

You can insert text at the current position with "I". For exam-
ple, "I foo" inserts "foo" at cursor. Text to the right of it
is shifted right. Any content above 64 chars is lost.

You can "put" a new line with "P". "P foo" will insert a new
line under the cursor and place "foo" on it. The last line of
the block is lost. "U" does the same thing, but on the line
above the cursor.

Inserting anything also copies the inserted content into IBUF.
Whenever an inserting command is used with no content (you still
have to type the whitespace after the word though), what is in-
serted is the content of IBUF.

This is all well and good, but a bit more granularity would be
nice, right? What if you want to insert at a specific position
in the line? Enter FBUF.

"F foo" finds the next occurrence of "foo" in the block and
places the cursor in front of it. It then spits the current line

44 1 General Documentation

in the same way "T" does.

It's with this command that you achieve granularity. This allows
you to insert at arbitrary places in the block. You can also
delete contents with this, using "E". "E" deletes the last found
contents. So, after you've done "F foo" and found "foo", running
"E" will delete "foo", shifting the rest of the line left.

List of commands:

T (n --): select line n for editing.
P xxx: put typed IBUF on selected line.
U xxx: insert typed IBUF on selected line.
F xxx: find typed FBUF in block, starting from current
 position+1. If not found, don't move.
I xxx: insert typed IBUF at cursor.
Y: Copy n characters after cursor into IBUF, n being length of
 FBUF.
X (n --): Delete X chars after cursor and place in IBUF.
E: Run X with n = length of FBUF.

Visual Text Editor

This editor, unlike the command-line editor, is grid-based
instead of being command-based. It requires the Grid subsystem
(see doc/grid.txt Page 62)

It is loaded with "VE" and invoked with "VE". Note that this
also fully loads the command-line editor.

This editor uses 19 lines. The top line is the status line and
it's followed by 2 lines showing the contents of IBUF and
FBUF. There are then 16 contents lines. The contents shown is
that of the currently selected block.

The status line displays the active block number, then the
"modifier" and then the cursor position. When the block is dir-
ty, an "*" is displayed next. At the right corner, a mode letter
can appear. 'R' for replace, 'I' for insert, 'F' for find.

All keystrokes are directly interpreted by VE and have the
effect described below.

Pressing a 0-9 digit accumulates that digit into what is named
the "modifier". That modifier affects the behavior of many
keystrokes described below. The modifier starts at zero, but
most commands interpret a zero as a 1 so that they can have an
effect.

'G' selects the block specified by the modifier as the current

1.10 Editing text (ed.txt) 45

block. Any change made to the previously selected block is
saved beforehand.

'[' and ']' advances the selected block by "modifier".

'h' and 'l' move the cursor by "modifier" characters. 'j' and
'k', by lines. 'g' moves to "modifier" line.

'H' goes to the beginning of the line.

'L' goes to the char following the last non-whitespace char. If
everything following the cursor is whitespace, goes to the end
of the line.

'w' moves forward by "modifier" words. 'b' moves backward.
'W' moves to end-of-word. 'B', backwards.

'I', 'F', 'Y', 'X' and 'E' invoke the corresponding command from
command-based editor.

'o' inserts a blank line after the cursor. 'O', before.

'D' deletes "modifier" lines at the cursor. The first of those
lines is copied to IBUF.

'R' goes into replace mode at current cursor position.
Following keystrokes replace current character and advance
cursor. Press return to return to normal mode.

'f' puts the contents of your previous cursor movement into
FBUF. If that movement was a forward movement, it brings the
cursor back where it was. This allows for an efficient combi-
nation of movements and 'E'. For example, if you want to delete
the next word, you type 'w', then 'f', then check your FBUF to
be sure, then press 'E'.

*** 'f' is the key you're looking for. It enables all copy/
pasting capabilities in VE. Try it.

't' and 'm' are for bookmarks. There are 10 bookmarks, select-
able through the modifier. 'm' saves current position and block,
't' recalls it.

*** If a recall happens on the same line, it is 'f' compatible,
that is, you can use m/t as a text selection tool.

'@' re-reads current block even if it's dirty, thus undoing
recent changes.

'!' writes the current block to disk.

46 1 General Documentation

'&' WIPE's the current block but doesn't save it. You can still
undo a mistyping with '@'.

'q' quits VE

Tight screens

Blocks being 64 characters wide, using the Visual editor on a
screen that is not 64 characters wide is a bit less convenient,
but very possible.

When VE is in a "tight screen" situation, it behaves different-
ly: no gutter, no line number. It displays as much of the "left"
part of the block as it can, but truncate every line.

The right part is still accessible, however. If the cursor moves
to a part of the block that is invisible, VE will "slide" right
so that the cursor is shown. It will indicate its "slid" mode by
adding a ">" next to the cursor address in the status bar.

To slide back left, simply move the cursor to the invisible part
of the left half of the block.

Other than that, VE works the same.

1.11 Memory Editor (me.txt)
The Memory Editor at B115, which can be loaded with "ME" and
then invoked with "ME" is a Grid application (doc/grid) allowing
you to explore and modify binary contents in the memory.

Such applications are often called "hex editors" in the modern
world.

The application uses the whole screen and has 3 main sections:
the status bar, the hex display and the ASCII display.

The status bar has 3 fields:

A: Base address begin displayed. The top left cell of the
 display is the value at that address.
C: Cursor position. This is the address relative to the Base
 address and represents where the cursor presently is.
S: Stack. This displays PS exactly like the ".S" word does.
 Because some actions affect the stack, it's useful to see it
 in real time.

The 2 other sections display the contents of the memory
following the Base Address, with the left part being mirrored by
the right part.

1.11 Memory Editor (me.txt) 47

While running, ME repeatedly waits for single keystrokes and
performs the associated action, if any. Unlike VE (doc/ed), it
has no concept of accumulator that affects all commands.

The Base address is always divisible by 16.

Press q to quit.

Tight mode

The regular mode of ME requires 60 columns and shows 16 bytes
per line. When the screen doesn't have enough columns, it falls
back to a 8 bytes per line mode, requiring 32 columns.

Navigating

You can increase/decrease the Base Address in a page-by page
fashion with [and].

You can do it in a line-by-line fashion with J and K.

The Cursor determines where most actions will take place and the
cursor can be moved with h/l (left/right) and j/k (down/up),
like in VE. There is no accumulator though, single mode only.

You can jump to a specific address with G. When pressing G, you
will be prompted for a hexadecimal address. You can type 4
characters or less-than-4-plus-return.

When you do that, the base address is changed to what you've
specified. If it's not divisible by 16, the Cursor is moved to
make up the difference.

When jumping to a new address, ME checks whether that address is
in the currently visible page. If it is, only the cursor moves,
not the base address.

Playing with the stack

You can read the 16-bit cell number at Cursor and place it in
the stack with @. You can write from Stack to Cursor with !.

You can put the current cursor position on the Stack with m.

You can jump to the address currently on the top of the Stack
with g.

48 1 General Documentation

You can "follow" the Cursor, that is, jump to the address where
the cursor currently points with f.

You can "enter" the Cursor, that is, save the current Cursor
position to stack and then "follow". When you want to come back,
press g.

Modifying memory

When you press R, you are in "replace" mode. As long as you
enter valid hexadecimal pairs, they will be written to the
Cursor and the Cursor will advance. As soon as you enter an
invalid value or Enter, the replace mode stops.

You can also press A to toggle the ASCII mode. In this mode,
the Cursor will keep its position, but will go on the right
side of the screen.

When you go in "replace" mode while also in ASCII mode, you can
enter ASCII values directly. Enter to stop.

1.12 Disassemblers (dis.txt)
Some architectures (6502 and 6809 for now) include a disassemb-
ler in addition to an assembler. The loader word follows the
same pattern as the assemblers: it lives in ARCHM and ends with
"D". Examples: 6502D 6809D

All disassemblers require the corresponding assembler to be
loaded first.

Once loaded, they supply the word "dis (addr --)" which prints
DISCNT lines (by default 20) of disassembled memory starting at
"addr". DISCNT is a VALUE, so you can change it with TO.

Disassembly formatting tries to stay close to the "manufacturer
language" rather than the assembler language. For example,
the 6809 disassembly of "$42 X+N ADDA," is "ADDA 42,X".

We lose symmetry with assembler, but we gain general readabili-
ty. During assembly, we are constrained by Forth semantics, but
with disassembly, we aren't. We can afford to make ourselves
closer to manufacturer language.

Numbers are always hexadecimal and width matter. "2a" means that
an 8b literal was extracted from the opcode and "002a" means
that a 16b literal was.

Some opcodes are invalid, so you'll get "???" outputs. From the

1.12 Disassemblers (dis.txt) 49

first of these that you get, you can consider the rest of the
output to be garbage because opcodes are "out of sync".

1.13 Emulators (emul.txt)
Some architectures (6502 and 6809 for now) include an emulator,
allowing you to run foreign code on any host. The loader word
follows the same pattern as the assemblers: it lives in ARCHM
and ends with "E". Examples: 6502E 6809E

All emulators require the corresponding disassembler to be
loaded first.

Once loaded, the following words are supplied, regardless of
the arch:

cpu. -- Print CPU register values
run1 -- Run a single instruction
runN n -- Run n instructions
run -- Run until CPU is halted

You can define breakpoints through the "'BRK?" VALUE, which
points to a word with a (-- f) signature. If it returns
nonzero, the run loop halts. If 'BRK? is zero (default value),
there is no breakpoint.

Breakpoints are checked after having run an op. This means that,
after your run is interrupted by a breakpoint condition, you
don't have to disable breakpoints to resume, resuming will
always run at least one op.

There is also the "VERBOSE" value, defaulting to 0. If set to
nonzero, every run step will also execute "cpu.".

"MEM" points to the area of memory allocated for the emulated
machine. Usually, 2048 bytes are allocated there. Each emulated
memory operation are done relative to "MEM".

Each emulator have an "initializer" word which initializes
registers that need it (PC, DP, etc.). It has the name of the
loader word + $. Examples: 6502E$ 6809E$

6502 init: PC: $200
6809 init: PC: $100 DP: 0

"run" words don't initialize CPU registers.

Each emulator supply pointer words for each register. For
example, 'D in 6809 would point to a 16b value, 'A to the exact
same space (but we have to use it as a byte), etc. 16b registers
are in target byte order, which means that 'D points to a big

50 1 General Documentation

endian value regardless of the host architecture.

6502 registers: A X Y S P PC
6809 registers: D X Y U S PC A B CC DP

Usage

These emulators are designed to debug small pieces of code. You
could use them to emulate complete machines, but you'd have to
develop quite a bit of tooling around it.

For example, if you just want to run a few ops and see how it
goes, you could do something like this:

6502E$ 1 TO VERBOSE
HERE MEM $200 + 'HERE !
$02 # LDA, TAY, $12 # ADC, 1 <> SBC, BRK,
'HERE !
run

If you want to debug Collapse OS ports within context, things
get a bit more complex. One option is to emulate a full COS
binary. You can do it by identifying the address of the part
you want to debug and use BRK? with a word that checks the
value of PC. Then, you single step to your heart's content.

However, this is slow: it can take a while before your emulator
gets where you want. Also, you have to develop tooling around
the emulator because you'll need a (emit) and (key?) word that
feeds content to the interpreter loop.

But it doesn't need to be super complicated. It could be as
simple as mapping (emit) to $700 and (key?) to $780. If, for
example, you want to test the "." word, you write "42 . BYE"
+ CR to MEM+$780, call "run", then verify that you end up with
"42 ok" + CR in MEM+$700.

One thing I favor, however, is working with partial binaries.
That is, I copy Collapse OS code around and keep only the bare
minimum for the word I want to test, and then I run the code I
want to run in BOOT. Quicker to build, quicker to emulate.

1.14 Programming AVR chips (avr.txt)
(In this documentation, you are expected to have an AVR binary
ready to send. To assemble an AVR binary from source, see
asm/avr.txt Page 80)

To program AVR chips, you need a device that provides the SPI
protocol. The device built in the rc2014/sdcard recipe fits the

1.14 Programming AVR chips (avr.txt) 51

bill. Make sure you can override the SPI clock because the sys-
tem clock will be too fast for most AVR chips, which are usually
running at 1MHz. Because the SPI clock needs to be a 4th of
that, a safe frequency for SPI communication would be 250kHz.

The programmer device

The AVR programmer device is really simple: Wire SPI connections
to proper AVR pins as described in the MCU's datasheet. Note
that this device will be the same as the one you'll use for any
modern SPI-based AVR programmer, with RESET replacing SS.

This device should have an on/off switch that controls the
chip's power for a very simple reason: Because we can't control
what's on the chip, it could mess up your whole SPI bus when
RESET is not held low. This means that as long as it's connected
and powered, it is likely to mess up your other devices, such as
the SD card.

You could put the AVR chip behind a buffer to avoid this, but
an on/off switch also does the trick and satisfies the low-tech
lover in you.

Programming software

The AVR programming code is at B160.

Before you begin programming the chip, the device must be desel-
ected. Ensure with "0 (spie)".

Then, you initiate programming mode with "asp$", and then issue
your commands.

Each command will verify that it's in sync, that is, that its
3rd exchange echoes the byte that was sent in the 2nd exchange.
If it doesn't, the command aborts with "AVR err".

Ensuring reliability

The reliability of your communication depends a lot on the
soundness of your SPI relay design. If it's good, you will sel-
dom see those "AVR err".

However, there are worse things than "AVR err": wrong data. Sync
checks ensure communication reliability at every command, but
in the case of commands getting data, you might be out-of-sync
when you receive your result without knowing it! To ensure that

52 1 General Documentation

you're still in sync, you need to issue a command, which might
spit "AVR err". If it does, your previous result is unreliable.

Here's an example word that reliably prints the high fuse value
from SPI devid 1:

: get 1 asp$ asprdy aspfh@ asprdy .x 0 (spie) ;

Another very important matter is clock speed. As mentioned
above, the safe clock speed is 250kHz. If you use the SPI design
in rc2014/sdcard recipe, this means that your input clock speed
can theoretically be 500kHz because the '161 divides it by 2.

In practice, however, you can't really do that because depending
on the timing of your SPI write, the first "bump" of the SPI
clock might end up being nearly 500kHz, which will result in oc-
casional communication errors.

The simplest and safest way to avoid this is to reduce your
raw input clock by 2, which will reduce your effective communi-
cation speed by 2. There certainly are options allowing you to
keep optimal speed, but they're significantly more complex than
accepting slower speed.

Access fuses

You get/set they values with "aspfx@/aspfx!", x being one of "l"
(low fuse), "h" (high fuse), "e" (extended fuse).

Access flash

Writing to AVR's flash is done in batch mode, page by page. To
this end, the chip has a buffer which is writable byte-by-byte.

Writing to the flash begins with a call to asperase, which
erases the whole chip. It seems possible to erase flash page-by-
page through parallel programming, but the SPI protocol doesn't
expose it, we have to erase the whole chip. Then, you write to
the buffer using aspfb! and then write to a page using aspfp!.
Example to write $1234 to the first byte of the first page:

asperase $1234 0 aspfb! 0 aspfp!

Please note that aspfb! deals with *words*, not bytes. If, for
example, you want to hook it to C!*, make sure you use MOVEW
instead of MOVE. You will need to create a wrapper word around
aspfb! that divides dst addr by 2 because MOVEW use byte-based
addresses but aspfb! uses word-based ones. You also have to make
sure that C@* points to @ (or another word-based fetcher)

1.14 Programming AVR chips (avr.txt) 53

instead of its default value of C@.

Access EEPROM

Accessing EEPROM is simple and is done byte-by-byte with words
aspe@ and aspe!. Example:

$42 0 aspe! 0 aspe@ .x (prints 42)

1.15 Word tables (wordtbl.txt)
Word tables are arrays of pointer to words. B124 provide words
allowing to conveniently create and use these tables. These
words are:

WORDTBL x n -- a Initialize a word table named x witn n
 elements.
:W x ... ; a -- a? Add a new anonymous word to the active tbl
'W x a -- a? Find x in dict and add it to active tbl

The idea is that when you call WORDTBL, it becomes the active
table by pushing its first address to PS. Then, for each new
element you add, current address is increased and when all
elements are added, that address is dropped from PS. Example
usage:

124 LOAD
: foo 42 . ;
: bar 43 . ;
3 WORDTBL w 'W foo 'W bar :W 44 . ;
w 0 WEXEC \ prints 42
w 1 WEXEC \ prints 43
w 2 WEXEC \ prints 44

1.16 Cross-compilation (cross.txt)
When you naively compile binary (see doc/asm) or forth code, the
resulting binary will only run on the machine it was compiled
on.

If you want to compile for another machine, you need to cross-
compile. Collapse OS includes tools to do so.

There are two distinct tasks that require distinct tools: binary
xcomp and forth xcomp.

1. Binary xcomp

Assemblers, when encoding absolute addresses, do so naively. If
you write "$1234 JMPi,", $1234 will always be the encoded

54 1 General Documentation

address. So far, so good.

Where there's a problem is when labels are involved. For exam-
ple, the result of "LSET L1 L1 JMPi," depends on where in memory
this opcode was created. As long as the code runs on the machine
that compiled it at the address it was compiled, this will
always do the right thing. Otherwise, we need to stop being
naive. We do so with the XCOMP loader word (it loads B200).

This loader introduces 2 new VALUEs that determine how labels
work: XORG and BIN(.

XORG is the address at which our binary starts on the host
machine. When you're ready to spit your cross-compiled binary,
you'll want to do "HERE TO XORG".

BIN(is the address at which our binary is expected to live in
the target machine. By default, it's 0.

There's a convenience "XSTART (bin(--)" word which sets BIN(
and XORG in one fell swoop.

Together, these words give you control over what the assembler
considers it's current "PC" (program counter) at any given
moment. For example, right after a "XSTART", "LSET L1" will give
L1 the value of BIN(. $100 bytes later, PC will be BIN(+$100.

To do binary xcomp, you will want to load XCOMP before you load
your assembler and only call XSTART when you're ready to spit
binary.

Example of xcomp from fresh Z80 Collapse OS boot:

ARCHM XCOMP Z80A 0 XSTART LSET L1 NOP, L1 JP,

This produces a binary that is designed to run an infinite loop
from address 0. Without XCOMP, the jump would be incorrect and
jump somewhere in the middle of the memory, where HERE was
during compilation.

Cross-compiling for another CPU architecture is the same thing,
all you need to do is to load the proper assembler. You just
have to be extra careful if compiling for a different endian-
ness. See below.

2. Forth xcomp

Binary xcomp is relatively straightforward. Forth xcomp is a bit
hairy. Because forth words are nothing but references to other
words all the way until we "hit rock" (hit native code), that

1.16 Cross-compilation (cross.txt) 55

code is tricky to relocate.

Collapse OS has tools (which builds upon the tools explained in
section 1) to produce a Collapse OS forth dictionary designed to
run on another machine at another address.

These tools are loaded with the "XCOMPC" (XCOMP for Collapse OS)
which requires "XCOMP" to be loaded first.

As with binary xcomp, XCOMPC requires XORG and BIN(to be pro-
perly set before you begin spitting cross forth words.

XCOMPC overrides defining words (:, CREATE, CONSTANT, etc.) so
that it adds an offset to every wordref it compiles. With this
override, you end up with a dictionary that is separate from the
host dictionary and is internally consistent.

What should that offset be? XORG, of course! As with binary
xcomp, XORG corresponds to the beginning of the binary being
built. In fact, every Collapse OS binary begins with purely
binary code, and thus, "regular binary xcomp" code.

It's only when the first word is created (the first CODE word
of the arch's port) that XCOMPC mechanism kicks in.

Dual-CURRENT

Although the principle behind cross-compilation is simple, the
devil's in the details. While building our new binary, we still
need access to a full-fledged Forth interpreter. To allow this,
we'll maintain two CURRENT: the regular one and XCURRENT, the
CURRENT value of the cross-compiled binary.

XCURRENT's value is a *host* address, not a cross one. For
example, if XORG is $1000 and the last word added to it was at
offset $234, then XCURRENT is $1234.

During cross compilation, we *define* in XCURRENT and we
execute in CURRENT.

When we encounter an IMMEDIATE during compilation, we execute
the *host* version of that word. The reason for this is simple:
any word freshly cross-compiled is utterly un-runable because
its wordrefs are misaligned under the current host.

xcomp unit

Cross-compilation of a Collapse OS binary is achieved through
the writing of a cross-compilation unit of code, xcomp unit for

56 1 General Documentation

short.

The xcomp toolset at XCOMPC alters core words in a deep way, so
ordering is important. First, we load our tools. XCOMP,
assembler.

We also define some support words that will not be part of our
resulting binary, but will be used during xcomp, for example,
declarations units and macros.

Then, it's time to apply XCOMPC overrides. From this point on.
every defining word is messed up and will produce offsetted
binaries.

The XCOMPC loader implicitly calls "0 XSTART", so if your BIN(
is 0, you can start spitting right away. Otherwise, call XSTART
with a proper BIN(value before you spit.

What to spit? See doc/bootstrap for deails, but in short it's:

1. Arch-specific port
2. COREL
3. Drivers
4. XWRAP (which loads COREH and wraps it up)

Once XWRAP is called, and if you did things the right way, what
is between XORG and HERE is your fancy new Collapse OS binary!

After you're done, you can run "FORGET PS_ADDR" (or whatever
is the first word declared by your xcomp unit) to go back to a
usable system.

Immediate compiling words trickyness

When using an immediate compiling word such as "IF" during
xcomp, things are a bit tricky for two reasons:

1. Immediates used during xcomp are from the host system.
2. The reference of the word(s) they compile is for the host
 system.

Therefore, unless the compiled word (for example (?br) compiled
by IF) has exactly the same address in both the host and target,
the resulting binary will be broken.

For this reason, we re-implement many of those compiling words
in xcomp overrides, hacking our way through, so that those
compiling words compile proper target references. We don't do
this for all compiling words though. This means that some words
can't be used in core and drivers, for example, ABORT" and .".

1.16 Cross-compilation (cross.txt) 57

How to know whether a word can be used?

1. If it's not an immediate compiling word, it's fine.
2. If its overriden in XCOMPC, it's fine.
3. Otherwise, you can't cross-compile it.

List of words that are known to *not* work in code having to be
cross-compiled:

* DOES>: words with DOES> in it can be cross-compiled, but not
 used. ": FOO CREATE DOES> ;" is fine, but *not* "FOO BAR"
 afterwards!
* ABORT"
* ."

Endian-ness

16 bit numbers you write when cross-compiling will often need to
follow your target's endian-ness, which might not be the same as
your host's. To this end, all assemblers define these words:

|T: Split word into 2 bytes, using Target's endian-ness. Calls
 |L or |M
T!: Like "!", but uses Target's endian-ness.
T,: Like ",", but uses Target's endian-ness.
T@: Read a word using Target's endian-ness. Used, for example,
 in XFIND to read prev to traverse a cross-compiled dict.

Constants and IMMEDIATE-ness, oh my!

One thing that is particularly tricky with xcomp code is the
management of constants. VALUEs declared before XCOMPC is loaded
are *only* accessible outside of compilation mode. For example,
PS_ADDR will not be a word in the target system. When writing
assembly, you can reference it just fine because you're in
runtime mode. However, if you're inside a ":", you can't
reference PS_ADDR. You have to add a literal of its value with
"[PS_ADDR LITN]" (or by creating a VALUE inside the target,
but this will take precious binary space!).

Extra words

xcomp tools define a couple of extra words that are specific to
it:

OALLOT oa -- ALLOT0 n bytes where n = oa-PC. In other words,

58 1 General Documentation

 make current binary oa bytes, filling with 0.
*VALUE -- A read-only, indirect VALUE
*ALIAS -- An indirect ALIAS

1.17 Architecture management (arch.txt)
To facilitate the development of the Collapse OS project, code
related to specific architectures all live in their separate
blk.fs file in /arch. This arch-specific code is organized to
live at B300. This means that, out-of-the-box, Collapse OS can
only be built with one architecture at once.

For example, /cvm/Makefile builds a blkfs with the /cvm/cvm.fs
architecture. /arch/z80/rc2014/Makefile builds a blkfs with a
/arch/z80/blk.fs architecture.

How then can you cross-compile from within Collapse OS? Out of
the box, you can't. You have to craft your own blkfs. The good
news is, it's not complicated.

For example, if you want a z80/8086 blkfs, you can start with
a z80 blkfs and graft /arch/8086/blk.fs on top of it. This could
mean, for example, that 8086 blocks start at B440. If you want
"round" blocks, you can add a "phantom" 199 marker at the end
of /arch/z80/blk.fs which would make your 8086 arch start at
B500.

Then, to have a clean system, adjust bock numbers in 8086
"ARCHM" block (B1 of 8086) to have their base offset B440
instead of B300. Finally, adjust your "ARCHM" loader word to
also load B441. You now have a clean z80/8086 Collapse OS!

1.18 Bootstrap guide (bootstrap.txt)
This guide tells you about the gory details you need to know to
create or maintain a port of Collapse OS. This is some pretty
hairy stuff and you should have read doc/usage, doc/impl and
doc/cross first. Is is also recommended that you use the z80
port (arch/z80/blk.fs) as a reference as you read this guide.

What is Collapse OS? It is a binary placed either in ROM on
in RAM by a bootloader. That binary, when executed, initializes
itself to a Forth interpreter. In most cases, that Forth
interpreter will have some access to a mass storage device,
which allows it to access Collapse OS' disk blocks and bootstrap
itself some more.

This binary can be separated in 5 distinct layers:

1. Arch-specific boot code (B302 for Z80)
2. Arch-specific boot words (B304 for Z80)
3. Arch-independant core words (low) (B210)

1.18 Bootstrap guide (bootstrap.txt) 59

4. Drivers, might contain arch-specific code
5. Arch-independant core words (high) (B226)

Boot code

The boot code, which is arch-specific, contains these elements:

1. A jump to the early initialization routine
2. The stable ABI (see doc/impl)
3. Core routines. At this point, lblnext, lblxt, lblcell,
 lblval and lbldoes are set.
4. The early initialization routines which initializes PSP and
 RSP and then executes BOOT from its address in the stable
 ABI.

Boot words

Then come the implementation of core Forth words in native
assembly. This is a limited set of words that implement core
operations:

QUIT ABORT EXIT BYE RCNT SCNT * /MOD TICKS (b) (n) (br) (?br)
(next) C@ @ C! ! AND OR XOR NOT + - R> >R R~ DUP ?DUP DROP SWAP
OVER ROT EXECUTE

On CPUs having I/O ports, PC! and PC@ are also needed.

This is the absolute minimum set of words that a port needs to
be functional. If it only implements those words, however, it's
going to be very slow.

Some forth core words are defined with "?:" instead of ":". If
those words are part of the native words, they're going to be
used instead of their forth version and will result in a much
faster binary.

Core words (low)

Then comes the part where we begin defining words in Forth.
Core words are designed to be cross-compiled, from a full Forth
interpreter. This means that it has access to more than boot
words. This comes with tricky limitations. See doc/cross.

Drivers

Core words don't include (key?) and (emit) implementations be-

60 1 General Documentation

cause that's hardware-dependant. This is where we need to load
code that implement it, as well as any other driver code we want
to include in the binary. This includes subsystems.

We do it now because if we wait until the high layer of core
words is loaded, we'll have messed up immediates and ":" will
be broken. If we load our code before, we won't have access to
a wide vocabulary.

See doc/drivers for more details.

Core words (high)

The final layer of core words contains the BOOT word as well
as tricky immediates which, if they're defined sooner, mess
cross compilation up. Once this layer is loaded, we become
severly limited in the words we can use without messing up.

Building it

So that's the anatomy of a Collapse OS binary. How do you build
one? If your machine is already covered by a recipe, you're in
luck: follow instructions.

If you're deploying to a new machine, you'll have to write a
new xcomp (cross compilation) unit. Let's look at its
anatomy. First, we have constants. Some of them are device-
specific, but some of them are always there. SYSVARS is the
address at which the RAM starts on the system. System variables
will go there and use $80 bytes. See doc/impl.

HERESTART determines where... HERE is at startup. 0 means
"same as CURRENT".

You will likely need more constants than that, but this depends
on your architecture and drivers.

Then comes time time to load the blocks that will compile the
thing. Order is important.

First come XCOMP followed by the assembler (example, Z80A). Then
comes CPU-specific macros, constants further loader words such
as the "C" units. They always live in B301 (see doc/blk). The
loader word for this is ARCHM. It's important that it's loaded
before XCOMPC because it's being executed during xcomp, not
included in the target binary.

Now comes the real deal: XCOMPC. It's the "forth" part of xcomp
and from this point on, we're in "target" mode. Everything we

1.18 Bootstrap guide (bootstrap.txt) 61

define ends up in the target binary (see doc/cross).

The first unit that comes after this is the "C" unit (example:
Z80C). "C" is for "code". It's the layers 1 and 2 from the layer
list at the top of this document.

We're done with the CPU-specific part! Now comes COREL, for
"core words (low)".

Then comes the custom part: drivers and subsystems. This part
is heavily dependant on the target system and varies a lot.

After that, you need to define a INIT word. This will be called
by BOOT right before spitting the prompt. This is usually used
to call init words of all subsystems.

All xcomp unit end with XWRAP, a helper word that loads "high"
core words and then wrap things up (set CURRENT and LATEST in
the stable ABI). You're done!

To produce a Collapse OS binary, you run that xcomp unit and
then observe the values of XORG and HERE. That will give you
the start and stop offset of your binary, which you can then
copy to your target media.

Good luck!

1.19 Hardware Drivers (drivers.txt)
To be able to run on a wide variety of hardware, Collapse OS
needs to abstract away interactions with it. It does so with
drivers, which are words that conform to a protocol and whose
job is to talk with the specific hardware they support.

This way, core words can be independant of implementation
details for particular hardware.

Running a minimal Collapse OS requires very little drivers:

(key?) -- c? f Returns whether a key has been pressed and,
 if it has, returns which key. When f is
 false, c is *not* placed in the stack.
(emit) c -- Spit a character on the console.

To have a functional (albeit minimal) Collapse OS running on
your fancy machine, all you need to do is to insert these words
in the "Drivers" layer of your xcomp (see doc/bootstrap) and
you're golden.

Be aware that these words are cross-compiled, so xcomp rules
apply. See doc/cross.

62 1 General Documentation

Most of the time, you'll want to implement those words in native
code. But Forth code is also an option. At the driver layer,
the whole "low" part of core words are available, which is a
majority of core words. And, because we're in xcomp, all immedi-
ate words are provided by the host. Therefore, the only words
that are off-limit for Forth driver code are non-imm words
defined in the "high" part of core words.

Subsystems

Having a minimal Collapse OS is already awesome, but maybe you'd
like to go a bit further and support fancy stuff like mass stor-
age or RS-232.

To that end, Collapse OS has subsystems, which are chunks of
logic sitting on top of wider hardware abstractions. For exam-
ple, the SD card subsystem depends on having hardware that can
somehow do SPI communication with a particular device.

So, if you make the effort of implementing the protocol required
by the SD card subsystem, then you win the prize of being able
to access SD cards!

Each subsystem in Collapse OS has its own documentation page
which details its required protocol and sub-subsystems:

* BLK subsystem (doc/blk)
* Grid subsystem (doc/grid)
* RX/TX subsystem (doc/rxtx)
* SPI protocol (doc/spi)
* PS/2 subsystem (doc/ps2)

1.20 The Grid subsystem (grid.txt)
The grid subsystem at B240 supplies a set of words on top of
the Grid protocol (see "Grid Protocol" below) that facilitates
the development of programs presenting a complex text interface,
for example, the Visual Editor.

It creates the concept of a cursor, always being a some position
on screen. That position is in the variable XYPOS, which is a
simple integer following the same "pos" logic as in the Grid
protocol.

It implements (emit), which sets the cell under the cursor to
the specified character, then moves the cursor right. If the
cursor is at the last column of the screen, it overflows to the
next line. If it's on the last line, it overflows to the first
line.

1.20 The Grid subsystem (grid.txt) 63

Grid's (emit) handles $d by moving the cursor to the next line
and $8 by moving the cursor left.

AT-XY (x y --) moves the cursor to the specified position. It
is equivalent to setting XYPOS directly, but uses separate X
and y numbers.

When the grid's cursor enters a new line, it clears its
contents through a repeated call to CELL!. That implementation
is in its world named NEWLN (ln --). This word can be over-
ridden. If it exists when the grid subsystem is loaded, the ex-
isting NEWLN will be used.

At build time, the Grid subsystem needs 3 bytes of system me-
mory through the GRID_MEM constant. At run time, GRID$ needs to
be called to initialize the system.

Grid protocol

A grid is a device that shows as a grid of ASCII characters and
allows random access to it.

COLS -- n Number of columns in the device
LINES -- n Number of lines in the device
CELL! c pos -- Set character at pos

Optional:
NEWLN old -- new Go to a new line from old, into new.
CURSOR! new old -- Move cursor from old pos to new pos
CELLS! a pos u -- *A* Update u contiguous cells, starting at
 pos, using characters starting at address
 a.

"pos" is a simple number (y * cols) + x. For example, if we
have 40 columns per line, the position (x, y) (12, 10) is 412.

CELL! allows all possible values of "c", including ASCII control
characters. The driver implementation isn't expected to filter
them out. Many systems have glyphs for this ASCII range, so the
driver should just show that glyph.

NEWLN is called when we "enter" a new line, that is, when we
overflow from previous line or when $0d (ASCII CR) is emitted.

When this is called, the line being entered should be cleared
of its contents. If the video driver needs to scroll, now is the
time. The NEWLN implementation has to return the new current
line. Most of the time, it's old+1, but if you scroll, you might
want to return old+0.

64 1 General Documentation

If it's not defined, the default implementation simply wraps to
the first line when reaching the end of the screen.

CURSOR! is called whenever we change the cursor's position. If
not implemented, it will be a noop. It is never called with an
out of range "pos" (greater than COLS*LINES).

It is the driver's responsibility to preserve the contents under
the cursor. When CURSOR! is call, we expect "old" to be restored
to the character it was before the cursor came on it. Before
doing that, however, it should make sure that the contents
hasn't been overwritten by CELL!.

CELLS! is a speed optimization. With some hardware, it's much
faster to update in batch. If the driver implements this an the
application uses it properly, it results in big speed gains.

1.21 The PS/2 subsystem (ps2.txt)
This subsystem translates keycodes received by a PS/2 keyboard
and provides a (key?) word. To work, drivers need to provide
this:

(ps2kc) -- kc Returns the next typed PS/2 keycode from the
 console. 0 if nothing was typed.

Then, it's as simple as loading PS2SUB to your xcomp.

1.22 Sega Master System ROM signatures (sega.txt)
When loading ROM, the SMS' BIOS checks for a special signature
at the end of that ROM. If that signature is incorrect, the ROM
doesn't load.

Collapse OS has a program to generate that signature at B165.
This document describes what it does.

At boot, the BIOS checks $10 bytes before the $8000, then
$4000, then $2000 mark for a signature. This signature has
the following structure.

$00-$07: String constant: "TMR SEGA"
$08-$09: null bytes
$0a-$0b: checksum
$0c-$0e: null bytes
$0f : "size" flag

The checksum is a simple 16-bit sum of all bytes up to the
beginning of the signature.

The size flag can have 3 values: $4a for an 8K ROM, $4b for

1.22 Sega Master System ROM signatures (sega.txt) 65

16K and $4c for 32K. It can have other values for other kinds
of sizes, but we don't care about them in the context of
Collapse OS.

Generating the signature

Before generating the signature, you need to have the contents
of your ROM somewhere in memory. Then, you load B165 and you
call "segasig" which has the signature "addr size". "addr" is
the adress of the beginning of the ROM and "size" is 0, 1 or 2
depending on whether your ROM is 8K, 16K or 32K.

Calling the word will write the $10 bytes signature at the
end of the ROM.

Note that all I/O use the "Addressed device" words (see
usage.txt Page 13), so I/O indirections will work.

1.23 Assembling Collapse OS from within it (selfhost.txt)
This is where we tie lose ends, complete the circle, loop the
loop: we assemble a new Collapse OS *entirely* from within
Collapse OS.

Build Collapse OS' from within Collapse OS is very similar to
how we do it from the makefiles in /arch. If you take
the time to look one, you'll see something that look like "cat
xcomp.fs | $(STAGE)". That's the thing. Open "xcomp.fs" in a
text editor and take a look at it. Some xcomp units are simple
proxy to a block, which you'll find in the blk/ subfolder for
this recipe.

To assemble Collapse OS from within it, all you need to do is
execute the content of this unit. When you run makefiles, it's
already Collapse OS building itself from within it, so it's not
different when it's the real deal.

When you do so, it will yield a binary in memory. To know the
start/end offset of the binary, You'll use ORG and HERE. ORG is
where your first byte starts in your host's memory, "HERE ORG -"
is the size of your binary.

With that, you can write that binary between those offsets on
your target media. That binary should be the exact same as what
you get in "os.bin" when you run "make". You now have a new
Collapse OS deployment.

See more details on bootstrapping at doc/bootstrap.

66 1 General Documentation

What to do on SDerr?

If you self host from a machine with a SD card and you get
"SDerr" in the middle of a LOAD operation, something went wrong
with the SD card. The bad news is that it left your xcomp
operation in an inconsistent state. The easiest thing to do it
to restart the operation from scratch. Those error are not
frequent unless hardware is faulty.

Cross-compiling directly to EEPROM

If your target media is a RAM mappable media, you can save prec-
ious RAM by cross-compiling Collapse OS directly to it. It req-
uires special handling.

You can begin the process in a regular manner, but right before
you're about to assemble the boot code, take a pause.

Up until now, you've been loading your cross compiling tools in
RAM, now, you're about to write Collapse OS. So what you need
to do is change HERE to the address of your EEPROM. Example:

$2000 *TO HERE

Then, you can continue the process normally.

1.24 Algorithmic notes (algo.txt)

Multiply a number by another

Let's say we want to multiply 6 by 5 for a result of 30.

First, let's look at binary forms:

110 (6)
101 (5)

The idea is that we'll loop 16 times (for 16 bit) through one of
the numbers (let's use 6), left-shifting through it. At each
step, we check if we've shifted a 1. If yes, then we add the
second number to our running result, which we also left shift
at each step.

Let's try our first (well, 13th for a 16 bit number) step. We
left-shift a 1 from 6, so we add 5 to our running result. That
gives us:

 10 (remainder 2)
101 (result 5)

1.24 Algorithmic notes (algo.txt) 67

Step 2, we do the same thing, left-shift a 1 again. We when left
shift our result, than add 5 to it again:

 0 (remainder 0)
1111 (result 15)

Then, for your last (16th) step, we left-shift a 0, so we don't
add anything to our result, but we still left-shift it, which
gives us our final result:

 0 (remainder 0)
11110 (result 30)

Divide a number by another, with remainder

Let's say we want to divide 249 by 7 so that we end up with
35 rem 4.

First, let's look at binary forms:

11111001 (249)
 111 (7)

The general idea is that we try to take the 7 and "fit" it
leftmost as much as possible so that we can subtract it. That
gives us 2 things: an order of magnitude and a remainder. Then,
we repeat until we can't do it any more.

For the first step, we can shift 7 5 times, which gives us:

11111001 (249)
11100000 (224)

We subtract, which gives us:

 11001 (remainder 25)
100000 (quotient 32)

Then, we fit the divisor in the remainder again:

11001 (25)
 1110 (14)

Which gives us:

 1101 (remainder 11)
10010 (quotient 34)

We have wiggle room for one last step:

68 1 General Documentation

1101 (11)
 111 (7)

Which gives us:

 100 (remainder 4)
10011 (quotient 35)

In terms of computing, the hard part is the "fitting". All
/MOD words in Collapse OS use the same fitting logic:

We begin with a remainder and quotient at 0 and we have a loop
that executes 16 times (for 16 bit numbers). At each step, we
left-shift the dividend into the remainder and try to subtract
the divisor from it. If it fits, we left shift a 1 into the
quotient, otherwise we left shift a 0 into the quotient.

To save space, we can even use the same memory space for the
input dividend and the output quotient because the result never
overlap while we left-shift.

1.25 Frequently asked questions (faq.txt)

What is the easiest way to run Collapse OS on a modern
 computer?

Run the C VM in folder "/cvm". Run "make", then "./cos-grid".
See doc/usage.txt Page 13 for the rest.

How do I use the different emulators?

Ah, you've noticed that /emul contains quite a few emulators.
Code in this folder only build emulators, not the binary to run
under it. It's the /arch folder that contains the makefiles to
build Collapse OS binaries to run under those.

When a binary built in /arch has a corresponding emulator, the
makefile has a "emul" target that you can use.

For example, "cd arch/z80/rc2014 && make emul" builds RC2014's
Collapse OS, the RC2014 emulator and then invokes the emulator.

How do I fill my SD card with Collapse OS' FS?

Very easy. You see that "/cvm/blkfs" file? You dump it to your
raw device. For example, if the device you get when you insert
your SD card is "/dev/sdb", then you type "cat emul/blkfs | sudo
tee /dev/sdb > /dev/null".

2 Assemblers 69

2 Assemblers

2.1 Assembling binaries (asm/intro.txt)
Collapse OS features many assemblers. Each of them have their
specificities, but they are very similar in the way they work.

This page describes common behavior. Some assemblers stray from
it. Refer to arch-specific documentation for details.

Initial setup

Assemblers live in their arch-specific blkfs. To load it, you
first need to run "ARCHM" to have arch-specific loaders, and
then call your assembler loader (for example, "Z80A").

Loaded alone, an assembler will spit opcodes for a "live" tar-
get, that is, the computer it's running on.

As long as you don't relocate the code, you will be able to run
it just fine, but if you need to relocate it, you will need to
load XCOMP *before* you load your assembler so that you have
the necessary tooling to craft relocatable binaries.

See doc/cross for details.

Wrapping native code

You will often want to wrap your native code in such a way that
it can be used from within forth. You do that with CODE.

CODE allows you to create a new word, but instead of compiling
references to other words, you write native code directly.
Example:

CODE 1+ BC INCd, ;CODE

This word can then be used like any other (and is of course
very fast).

Unlike the regular compiling process, you don't go in "compile
mode" when you use CODE. You stay in regular INTERPRET mode.
All CODE does is spit the proper word header.

Be sure to read about your target platform in doc/code. These
documents specify which registers are assigned to what role.

70 2 Assemblers

Usage

To spit binary code, use opcode words such as "LDrr," in the
Z80 assembler which spits LD in its "r1, r2" form. Unlike
typical assemblers, operation arguments go before the opcode
word, not after it. Therefore, the "LD A, B" you would write in
a regular assembler becomes "A B LDrr,"

Those opcode words, of which there is a complete list in each
arch-specific documentation, end with "," to indicate that their
effect is to write (,) the corresponding opcode.

The "argtype" suffix after each mnemonic is needed because the
assembler doesn't auto-detect the op's form based on arguments.
It has to be explicitly specified.

Although efforts are made to keep those argtypes consistent
across arches, there are differences. Arch-specific doc has
precise definitions for those argtypes.

For example, in Z80 asm, "r" is for 8-bit registers, "d" for
16-bit ones, "i" for immediate, "c" is for conditions.

Labels and flow

Assemblers, of course, implement their "flow" ops (jumps) but
these are often awkward to use directly. To help with that,
Collapse OS has a unified "flow" interface:
HAL (see doc/hal). The HAL implements these flow words:

IFZ, .. ELSE, .. THEN, \ part 1 if Z is set, part 2 otherwise
IFNZ, .. THEN, \ execute if Z is unset
IFC, .. THEN, \ execute if C is set
IFNC, .. THEN, \ execute if C is unset
BEGIN, .. BR JRi, \ loop forever
BEGIN, .. BR JRZi, \ loop if Z is set
FJR JRi, .. THEN, \ unconditional forward jump

This unified flow layer lives at B007 and is loaded with
assemblers. This layer requires the assembler to supply these
words (which are ofter simple aliases:

JRi, off -- relative unconditional jump
JRZ, off -- relative conditional jump if Z is set
JRNZ, off -- relative conditional jump if Z is unset
JRC, off -- relative conditional jump if C is set
JRNC, off -- relative conditional jump if C is unset

This is not related to flow, but for xcomp, these words are

2.1 Assembling binaries (asm/intro.txt) 71

also defined by every assembler:

JMPi, addr -- unconditional absolute jump
JMP(i), addr -- unconditional indirect jump
CALLi, addr -- unconditional absolute call
i>, n -- push n to Parameter stack
(i)>, addr -- push value at addr to Parameter Stack

These words generate the appropriate native code to perform the
described actions.

These structured flow are elegant, but limited because they need
to be symmetric. There is no way, for example, to jump out of
an infinite loop using only those words.

Labels can also be used with those flow words for more
flexibility:

LSET L1 .. L1 BR JRi, .. L1 JMPi, \ backward jumps
FJR JRi, TO L1 .. L1 FMARK \ forward jump
BEGIN, FJR JRi, TO L1 .. BR JRi, .. L1 FMARK \ exiting loop

Labels are simple VALUEs. For example, you can create a label
with "0 VALUE lblmylabel". If in an XCOMP context, make sure you
declare your labels before XSTART. XCOMP pre-declares L1 L2 and
L3 which can be used in local contexts.

2.2 Z80 assembler specificities (asm/z80.txt)
Load with "Z80A".

Mnemonics having only a single form, such as PUSH and POP,
don't have argtype suffixes.

Be aware that "SP" and "AF" refer to the same value: some 16-
bit ops can affect SP, others, AF. If you use the wrong argu-
ment on the wrong op, you will affect the wrong register.

Flow examples

IFZ, NOP, ELSE, NOP, THEN,
BEGIN, NOP, JR, AGAIN, (unconditional)
BEGIN, NOP, JRZ, AGAIN, (conditional)
LSET L1 NOP, L1 BR JRi, (backward jump)
FJR JRi, TO L1 NOP, L1 FMARK (forward jump)

IX+, IY+

IX/IY instructions are a bit complicated. As a general rule,

72 2 Assemblers

IX and IY are equivalent to spitting an extra $dd / $fd and
then spit the equivalent of HL or (HL).

In "HL" op types, IX and IY words can be used simply. Examples:

IX PUSH,
IY POP,
IX $1234 LDdi,
HL ADDIXd,

In "(HL)" op types, all IX/IY words contain displacements and
need to be used with IX+ and IY+ prefix words.

Examples:

0 IX+ E LDIXY, (ld e, (ix+0))
-2 IY+ INC(IXY+), (inc (iy-2))

Instructions list

Letters in [] brackets indicate "argtype" variants. When the
bracket starts with ",", it means that a "plain" mnemonic is
available. For example, "RET," and "RETc," exist.

r => A B C D E H L (HL)
d => BC DE HL AF/SP
c => CNZ CZ CNC CC CPO CPE CP CM
i => immediate
(i) => memory reference (both 8b and 16b)

LD [rr, ri, di, (i)HL, HL(i), d(i), (i)d, rIXY, IXYr,
 (DE)A, A(DE), (i)A, A(i)]
ADD [r, i, HLd, IXd, IXIX, IYd, IYIY]
ADC [r, HLd]
CP [r, i, (IXY+)]
SBC [r, HLd]
SUB [r, i]
INC [r, d, (IXY+)]
DEC [r, d, (IXY+)]
AND [r, i]
OR [r, i]
XOR [r, i]
OUT [iA, (C)r]
IN [Ai, r(C)]
JP [, c, (HL), (IX), (IY)]
JR [, Z, NZ, C, NC]
CALL[, c]
RET [, c]

PUSH POP

2.2 Z80 assembler specificities (asm/z80.txt) 73

SET RES BIT
RL RLC SLA RLA RLCA
RR RRC SRL RRA RRCA
RST DJNZ
DI EI EXDEHL EXX HALT
NOP RETI RETN SCF
CPI CPIR CPD CPDR IM0
IM1 IM2 INI LDI LDIR
LDD LDDR NEG OUTI

Macros:

SUBHLd Clear carry + SBCHLd
PUSHA Push value of A. Destroys BC
HLZ Set Z according to HL. Destroys A
DEZ Set Z according to DE. Destroys A
BCZ Set Z according to BC. Destroys A
LDDE(HL) 16-bit LD from (HL) to DE. HL+1
LDBC(HL) 16-bit LD from (HL) to BC. HL+1
LDHL(HL) 16-bit LD from (HL) to HL. Destroys A
OUTHL (port --) OUT H, then OUT L. Destroys A
OUTDE (port --) OUT D, then OUT E. Destroys A

2.3 8086 assembler specificities (asm/8086.txt)
Load with "8086A".

Argtypes

Mnemonics are followed by argument types. For example, MOVri,
moves 8-bit immediate to 8-bit register.

'r' = 8-bit register 'x' = 16-bit register
'i' = 8-bit immediate 'I' = 16-bit immediate
's' = SREG register

Mnemonics that only have one signature (for example INT,) don't
have operands letters.

Mod/rm mnemonics

Mnemonics with "[]" argtypes are "mod/rm" mnemonics are are
designed to be fed with a "modrm argument". For example, if we
want to INC the byte in memory where DI points to, we would
write "[DI] [b] INC[]," If we want to increase the word at DI+1,
it would be "[DI] 1 [w]+ INC[],".

There are 2 kinds of modrm mnemonics: single and dual. Single
are for ops like "INC[]" or ops pairing a modrm with an

74 2 Assemblers

immediate such as "CMP[]i". Dual are for ops like "ADD[]" which
pairs a register with a memory address.

Single:

[m] Direct memory address (byte)
[M] Direct memory address (word)
[r] 8b register
[x] 16b register
[b] Indirect byte
[w] Indirect word
[b]+ Indirect byte + displacement (8b)
[w]+ Indirect word + displacement (8b)

Dual:

r[] Indirect byte to 8b register
x[] Indirect word to 16b register
[]r 8-bit register to indirect byte
[]x 16-bit register to indirect word
r[]+ Indirect byte + displacement (8b) to 8b register
x[]+ Indirect word + displacement (8b) to 16b register
[]+r 8b register to indirect byte + displacement (8b)
[]+w 16b register to indirect word + displacement (8b)

Remember that BP is only valid with displacement mod/rm.

NOTE: the []i form also works with [x]. It auto-detects whether
"i" is 16b or 8b and writes the proper form.

Flow examples

IFZ, NOP, THEN, (no ELSE, yet)
BEGIN, NOP, BR JRi, (unconditional)
BEGIN, NOP, Z? BR ?JRi, (conditional)
LSET L1 NOP, L1 JMPi, (backward near jump)
FJR JRi, TO L1 NOP, L1 FMARK (forward short jump)

BR, LSET, FMARK come from the HAL convenience layer, see
doc/hal.txt Page 53

Instructions list

r -> AL BL CL DL AH BH CH DX
x -> AX BX CX DX SP BP SI DI
s -> ES CS SS DS
[] -> mod/rm
i -> immediate

2.3 8086 assembler specificities (asm/8086.txt) 75

RET CLI STI HLT CLD STD NOP CBW REPZ REPNZ
LODSB LODSW CMPSB SMPSW MOVSB MOVSW SCASB SCASW STOSB STOSW

CALLi
JMPr is for "register jump" and takes a register as an agument
JMPf is for "far jump" and has signature "segment offset --"

INC[r,x,[]]
DEC[r,x,[]]
POP[x,[]]
PUSH[x,[],s]
MUL[r,x]
DIV[r,x]
XOR[rr,xx]
OR[rr,xx]
AND[rr,xx,ALi,AXI]
ADD[rr,xx,[]i,ALi,AXI]
ADC[rr,xx,[]i,ALi,AXI]
SUB[rr,xx,[]i,ALi,AXI]
INT

CMP[rr,xx,[],[]i]
MOV[rr,xx,[],ri,xI,sx,rm,xm mr,mx,ALm,AXm,mAL,mAX]

("1" means "shift by 1", "CL" means "shift by CL")
ROL[r1,x1,rCL,xCL]
ROR[r1,x1,rCL,xCL]
SHL[r1,x1,rCL,xCL]
SHR[r1,x1,rCL,xCL]

2.4 6809 assembler specificities (asm/6809.txt)
Load with "6809A".

First, the 6809 stands out by being big-endian. It doesn't
change much in terms of assembler usage, but it's a good idea
to keep it in mind.

Then, it stands out by having few "targetable" registers. It
onlt has A, B and D accumulators and X, Y, U and S registers are
targeted directly by only a handful of operations. Therefore,
6809 assembly language designer decided to decline every ops
with all their possible targets. For example, the "ADD" op
has 3 forms: ADDA, ADDB and ADDD. This assembler follow this
design and has an op word for every form.

Then, it stands out by having a vast array of addressing modes.
This significantly impact usage: Except for inherent operations
(ops that don't require any argument), all arguments passed to
operations have to first pass through an "adressing word". For

76 2 Assemblers

example, "<>" means the "Direct addressing". Example usage:

$42 <> CMPA,

This line is equivalent to "cmpa $42" in "regular assembly".
Addressing words are:

* "#" --> Immediate
* "()" --> Extended addressing
* "[]" --> Indirect Extended
* Indexed:
 * "R+N" --> Constant Offset indexed
 * "R+0" --> Shortcut for "0 R+N"
 * "R+R" --> Accumulator Offset indexed
 * "R+", "R++", "-R", "--R" --> Auto-increment indexed
 * All index words have their indirect forms: "[R+N]", "[R++]",
 etc..

Index words above are declined and R is a placeholder. Actual
words have actual registers, for example, "X+N", "Y+D", "[S+]",
etc. Example full usages:

42 # CMPB,
L1 @ () LDA,
X+A ADDB,
[Y++] ADCA,

The case of PSH, PUL, TFR, EXG

TFR and EXG are exceptions to the above rule that all arguments
go through an adressing word. The 6809 define register constants
for usage with TFR and EXG and can be used directly. Example:

A B TFR, (copy A into B)
U S EXG, (exchange U and S)

PSH and PUL are even bigger exceptions. Their argument *follow*
the op mnemonics and this argument is a list of single letter
registers: $ (for PC), S, U, Y, X, % (for DPR), A, B, D
C (for CCR), @ for all. Order doesn't matter. S/U mean the same
thing. D means A and B. Examples:

PSHS, ABUXY
PULU, $
PSHU, @

Branching

The 6809 assembler supports regular branching words but has

2.4 6809 assembler specificities (asm/6809.txt) 77

special provisions for 16-bit relative branching, something that
not all arches support.

The "L" versions of relative branches are present, but because
flow words only support 8-bit branching, it's not of much use.

Instructions

Next to each operation, in [] brackets, are supported addressing
modes:
M = Immediate D = Direct I = Indexed E = Extended H = Inherent

When forms have the same signature, they are grouped in ()
brackets.

ABX [H]
ADC(A,B) [MDIE]
ADD(ABD) [MDIE]
AND(AB) [MDIE] ANDCC [M]
ASL(AB) [H] ASL [DIE]
ASR(AB) [H] ASR [DIE]
BIT(AB) [MDIE]
CLR(AB) [H] CLR [DIE]
CMP(ABDXYUS) [MDIE]
COM(AB) [H] COM [DIE]
CWAI [M]
DAA [H]
DEC(AB) [H] DEC [DIE]
EOR(AB) [MDIE]
EXG SPECIAL
INC(AB) [H] INC [DIE]
JMP [DIE]
JSR [DIE]
LD(ABDXYUS) [MDIE]
LEA(XYUS) [I]
LSL(AB) [H] LSL [DIE]
LSR(AB) [H] LSR [DIE]
MUL [H]
NEG(AB) [H] NEG [DIE]
NOP [H]
OR(AB) [MDIE] ORCC [M]
PSH(US) SPECIAL
PUL(US) SPECIAL
ROL(AB) [H] ROL [DIE]
ROR(AB) [H] ROR [DIE]
RTI [H]
RTS [H]
SBC(AB) [MDIE]
SEX [H]
ST(ABDXYUS) [DIE]

78 2 Assemblers

SUB(ABD) [MDIE]
SWI [H]
SWI2 [H]
SWI3 [H]
SYNC [H]
TFR SPECIAL
TST(AB) [H] TST [DIE]

Branches: All words below have a "L" form for a 2b displacement.
Example: BRA --> LBRA

BCC BCS BEQ BGE BGT BHI BHS BLE BLO BLS BLT BMI BNE BPL BRA BRN
BSR BVC BVS

2.5 6502 assembler (asm/6502.txt)
6502 is one of the simplest CPUs out there and its assembler is
also simple. We have 3 types of opcodes: inherent, addressed
and branches.

As with other assemblers, all ops described below have a ","
suffix. For example, you write "NOP," rather than "NOP"

Inherent

Inherent opcodes are called without argument.

BRK NOP RTI RTS
CLC CLD CLI CLV
SEC SED SEI
DEX DEY INX INY
PHA PLA PHP PLP
TAX TXA TAY TYA TSX TXS

Addressed

Addressed opcodes take an address argument which needs to be
filtered through address mode words.

Immediate
<> ZeroPage
<X+> ZeroPage+X
<Y+> ZeroPage+Y
() Absolute
(X+) Absolute+X
(Y+) Absolute+Y
[X+] Indirect+X
[]Y+ Indirect+Y

2.5 6502 assembler (asm/6502.txt) 79

The indirect notations are not a typo, they're to illustrate
the difference in indirection scheme between X and Y. See 6502
datasheet.

Example usage:

42 # LDA,
$fe <> LDX,
$1234 () STY,

Not all address modes are legal with all ops below. This
assembler is not going to tell you when your combo is illegal,
it's just going to spit invalid code. The op list below indicate
valid address modes for each op.

We have a special situation with ASL/LSR/ROL/ROR: they can
target the accumulator. We have no addressing mode for this.
Instead, we have a special "inherent" op (no argument) for these
4 cases: ASLA/LSRA/ROLA/RORA. The "A" in the list below indicate
that.

ADC # <> <X+> () (X+) (Y+) [X+] []Y+
SBC # <> <X+> () (X+) (Y+) [X+] []Y+
CMP # <> <X+> () (X+) (Y+) [X+] []Y+
CPX # <> ()
CPY # <> ()
AND # <> <X+> () (X+) (Y+) [X+] []Y+
ORA # <> <X+> () (X+) (Y+) [X+] []Y+
EOR # <> <X+> () (X+) (Y+) [X+] []Y+
BIT <> ()
ASL A <> <X+> () (X+)
LSR A <> <X+> () (X+)
ROL A <> <X+> () (X+)
ROR A <> <X+> () (X+)
DEC <> <X+> () (X+)
INC <> <X+> () (X+)
LDA # <> <X+> () (X+) (Y+) [X+] []Y+
LDX # <> <X+> () (Y+)
LDY # <> <X+> () (X+)
STA # <> <X+> () (X+) (Y+) [X+] []Y+
STX <> <X+> ()
STY <> <X+> ()

Branches

Conditional branches are all relative, unconditional branches
are absolute.

There are 2 absolute branching ops: JMP and JSR. They are called
with a single numerical argument. The indirect mode of JMP is

80 2 Assemblers

called through the special JMP[] op. Examples:

$1234 JMP,
$1234 JMP[],
$1234 JSR,

Relative branch words are called with a single byte argument
and are compatible with regular flow words:

$fe BEQ,
CLC, BEGIN, NOP, BR BCC,

An important limitation with 6502 is that there is no relative
unconditional branch word! This has important implications with
our regular flow words because it means that "JRi," for 6502
has to be hackish and spit out an absolute JMP. This works with
BR, BUT NOT FOR FMARK.

Therefore, in 6502 code, FMARK is broken with unconditional
jumps and can't be used. Conditional is fine though, so
IF,..THEN, works.

Relative jump words:

BCC BCS (C=0/1)
BNE BEQ (Z=0/1)
BPL BMI (N=0/1)
BVC BVS (V=0/1)

2.6 AVR assembler specificities (asm/avr.txt)
Load with "AVRA".

All mnemonics in AVR have a single signature. Therefore, we
don't need any "argtype" suffixes.

Registers are referred to with consts R0-R31. There is
X, Y, Z, X+, Y+, Z+, X-, Y-, Z- for appropriate ops (LD, ST).
XL, XH, YL, YH, ZL, ZH are simple aliases to R26-R31.

Branching works differently. Instead of expecting a byte to be
written after the naked op, branching words expect a displace-
ment argument.

This is because there's bitwise ORing involved in the creation
of the final opcode, which makes z80a's approach impractical.

This makes labelling a bit different too. Instead of expecting
label words after the naked branching op, we rather have label
words expecting branching wordref as an argument. Examples:

2.6 AVR assembler specificities (asm/avr.txt) 81

' BRTS L2 TO, (branch forward to L2)
' RJMP L1 LBL, (branch backward to L1)

Model-specific constants

Model-specific constants must be loaded separately. AVRA
supplies loader words. Here's a list:

ATMEGA328P

Those units contain register constants such as PORTB, DDRB, etc.
Unlike many modern assemblers, they do not include bit
constants. Here's an example use:

DDRB 5 SBI,
PORTB 5 CBI,
R16 TIFR0 IN,
R16 0 (TOV0) SBRS,

Instructions list

OPRd
ASR COM DEC INC LAC LAS LAT LSR NEG POP PUSH
ROR SWAP XCH

OPRdRr
ADC ADD AND CP CPC CPSE EOR MOV MUL OR SBC
SUB

OPRdA
IN OUT

OPRdK
ANDI CPI LDI ORI SBCI SBR SUBI

OPAb
CBI SBI SBIC SBIS

OPNA
BREAK CL[C,H,I,N,S,T,V,Z] SE[C,H,I,N,S,T,V,Z] EIJMP ICALL
EICALL IJMP NOP RET RETI SLEEP WDR

OPb
BCLR BSET

OPRdb
BLD BST SBRC SBRS

Special

82 2 Assemblers

CLR TST LSL LD ST

Flow
RJMP RCALL
BR[BC,BS,CC,CS,EQ,NE,GE,HC,HS,ID,IE,LO,LT,MI,PL,SH,TC,TS,VC,VS]

Flow macros
LBL! LBL, SKIP, TO, FLBL, FLBL! BEGIN, AGAIN? AGAIN, IF, THEN,

3 How to read the code

3.1 How to read this code (code/intro.txt)
Because compactness is a primary design goal of Collapse OS,
comments in the code itself are terse. This represents an extra
challenge when comes the time of understanding it.

The code is designed to be accompanied by the documentation. If
a piece of code seems underdocumented, you should look for more
context in the documentation.

Core routines

At the heart of every port are the "core routines" of Collapse
OS. These are called all the time and their optimization is
paramount. They are, however, very small in scope and all fit
in a single block.

When you see labels lblnext, lblcell and friends being defined,
you're in core routines territory. The goal of these core
routines is to support all word types as described in
doc/impl.txt Page 21 .

HAL and Reserved registers

Most of Collapse OS' native code is written using the HAL. See
doc/hal.txt Page 53 first.

If you are reading real CPU-specific native code, you should be
aware of that CPU's register roles. See doc/impl.txt Page 21 and the
the
CPU-specific document of doc/code/.

Stack comments

Most comments in Collapse OS describe the expected stack at a
point in time. Those comments almost always describe PS with

3.1 How to read this code (code/intro.txt) 83

Top-Of-Stack being the rightmost element. For example, a
"(a b c)" indicate that at this point, we expect a PS of at
least 3 items with "c" being on top of it.

When we play with the Return Stack, we'll also include its sig-
nature with "R:". Example: (a b R:c d) means that b is PS'
TOS and d is RS' TOS.

Those elements can be seen (and are often called such) as
variables.

Names used for those variables are contextual. They're supposed
to be context-obvious, but to allow more compactness, some
conventions are used:

* A repeat of a previous variable are often 1 or 2 letters. For
 example, "firstchar" would become "fc" in following comments.
* "a" is an address.
* "sa sl" is an unpacked string. 2 elements in the stack, sl
 being the length, sa being the address of sl characters.
* "w" is a "word reference" it points to the word's type byte.
* "b" is a byte, "c" is a char (also a byte). You can generally
 assume the MSB to be 0.
* "n" is a cell-sized (2 bytes) number.
* "u" is a byte count. Often used in ranges.
* "f" is a boolean flag. 0 is false, nonzero if true.
* "r" is a "result", often an accumulator in an algorithm.
* For clarity purposes, the result of complex processing is
 often described in comments (ex: "a*b+c"), but only once.
* In loops, for clarity purposes, the same stack comment is
 often put at the beginning and end of the loop to show that
 we're looping in a balanced manner.
* We indent by 2 (used to be 4) spaces in word defs, loops,
 conditions. We do it loosely though: we often don't have
 enough screen space to do it strictly.
* Before a DO, when range arguments come from PS, we often add
 a comment describing which "variable" is used for range.
 Example: "(cnt) 0 DO ... LOOP". We can also see this
 pattern sometimes in assembler code when writing an hardcoded
 address put on PS at compile-time.

Driver code

Driver code has to be the hardest to read. It is often deeply
tied to the way hardware is organized. For compactness reasons,
we keep comments terse, and on top of that, we can't have
complete hardware specifications in Collapse OS itself. There-
fore, it is highly recommended to have technical specifications
handy when trying to read this code.

84 3 How to read the code

In the hardware documentation ("hw" folder), we try to document
hardware specs directly related to driver code, but this kind
of documentation is always going to be incomplete.

Idioms

Here are some common patterns you'll see:

<<8 >>8: removes MSB. Faster than "$ff AND".
>>8 IF: Checks if MSB > 0. Faster than "$ff >".

3.2 Z80 Boot code (code/z80.txt)
Let's walk through Z80 Boot code in arch/z80/blk.fs.

This assembles the boot binary. It requires the Z80 assembler
(B5) and cross compilation setup (B200). It requires some
constants to be set. See doc/bootstrap.txt Page 58 for details.

RESERVED REGISTERS:

* SP points to PSP
* IX points to RSP
* DE hold IP (Interpreter Pointer)
* BC holds PSP's Top Of Stack value
* IY is the A register

The boot binary is loaded in 2 parts. The first part, "macros"
before xcomp overrides, with "301 LOAD". The rest, after xcomp
overrides, with "Z80C".

As with any boot binary, it begins with the Stable ABI (see
doc/impl.txt Page 21), all of it at this point being a placeholder.

We do things a bit differently in Z80 because we also add RST
placeholders in case we want to graft some RST handlers in
there.

Right after that comes the early boot code. This is the very
first code being run. Initialization sequence is documented in
doc/impl.txt Page 21 .

Then comes the "next" routine which is called at the end of
every word execution. We can see that it:

1. Read wordref where IP currently points.
2. Continue to Execute

The execute routine begins by checking the byte where our
wordref in DE points to: it's the word type. Choosing the

3.2 Z80 Boot code (code/z80.txt) 85

proper behavior for the proper word type is most of the noise
of this code.

PFA fiddling is central to all word types and HL holds it. We
try to group word types to minimize operations, which is why
alias, ialias and DOES> are lumped together (they de-reference
their PFA).

Regular "compiled" words being special, it's implemented last.
Note that the DOES> word "continues" to this code after having
de-referenced its PFA: HL points to the right place. Then,
executing the "compiled" word is as simple as:

1. Push IP to RS
2. Checks for stack overflow (if SP and IX cross) if needed. See
 doc/impl.txt Page 21 .
3. Set IP to PFA+2
4. De-reference PFA+0 into DE
5. Recurse into execute

chkPS: This routine is called by every word needing to pop from
PS. What we do is that after we've popped everything we needed
to pop, we call chkPS with the "chkPS," macro and this then
verifies that SP hasn't gone over PS_ADDR. If it did, we call
lbluvfl which prints "stack underflow" and ABORTs.

The undeflow method requires high level words and because we
call it from very early code, it needs to be in the Stable ABI
so that we can call it from its binary offset recorded in it.

The comes the native words. It's important that the first word
of the dict has a 0 prev field so we can detect the end of it,
which is why we muck with XCURRENT.

We only document words that aren't self-evident.

PROTECTING REGISTERS: Avoiding using IX is rather easy, but DE
is sometimes hard to live without. Because we're already using
the stack for PS in our words, and because so far we've never
had to use shadow registers, we use EXX, whenever we need to
use DE. This way, DE is protected when we EXX, back.

FIND is the most complex of native words. It's implemented
natively because otherwise, loading code from storage is really
slow. Its logic goes as follow:

while not end-of-dict:
 if cur-entry.len (with IMMEDIATE ANDed out) == word.len:
 if cur-entry.name == word:
 found, push cur-entry, 1
 else:

86 3 How to read the code

 prev-entry
 else:
 prev-entry
else:
 not found, push word addr, 0

In this code, DE generally holds cur-entry, HL holds the
searched word.

One oddity in this implementation is that we hold searched word
"by the tail", that is, we hold the address of its last char.
Because of the dict structure, it's easier to compare chars in
a reverse order.

(br): When it's called IP points to the byte we need to offset
our IP by. That byte is signed, so it needs to be sign-extended
before it's added to IP.

(n): Literal value to push to stack is next to (n) reference
in the atom list. That is where IP is currently pointing. Read,
push, then advance IP.

*: The idea for DE*BC is to loop 16 times left-shifting DE. HL,
which begins at 0, doubles in every loop and every time that DE
carries, we add BC into the mix. For example, if BC is 3 and DE
is 2, HL will stay to zero until the 15th loop, at which points
it becomes 3, which is then doubled to 6 on the 16th loop. If
DE was 3, then the 16 looped would have carried BC once more
for a total of 9.

Carry flag management is a bit complicated here. We can't simply
use the flag of the last ADDHLd. The logic is as is: if any
ADDHLd carried during the loop, we have carry.

/MOD: The idea for AC /MOD DE is a bit like *. We loop 16 times
with AC left-shifting and HL accumulating and at each step, we
try to see if DE "fits in" HL. If it does, a 1 is added at the
right of the rotating AC. If it doesn't, DE is re-added back to
HL for the next loop.

For example, with AC=5 and DE=2, HL becomes 1 at 14th loop. DE
fails to fit, so a 1 is not integrated to AC, but HL stays at
1. On the 15th loop, HL is doubled to 2. DE fits, so AC gets
its 1, HL becomes 0. 16th loop, AC is doubled to 2, HL gets a
carry, DE fails to fit. Final result: AC=2, HL=1.

3.3 8086 Boot code (code/8086.txt)
Let's walk through 8086 Boot code at B400. This walkthrough is
a bit less detailed that the "canonical" z80 one, which is
contains comments that are common to all CPUs.

3.3 8086 Boot code (code/8086.txt) 87

This assembles the boot binary. It requires the 8086 assembler
(B20) and cross compilation setup (B200). It requires some
constants to be set. See doc/bootstrap.txt Page 58 for details.

In general, this code works like the Z80 boot code. We only
document when it differs.

RESERVED REGISTERS:

* AX is the Work register
* SP points to PSP TOS
* BP points to RSP TOS
* DX hold IP (Interpreter Pointer)
* BX holds PSP's Top Of Stack value

Master Boot Record

So far, the only platform where the 8086 boot code is used is
the PC/AT and this has the peculiarity of booting through the
Master Boot Record (MBR), which you can see in
arch/8086/pcat/mbr.fs. This is loaded at $7c00 on boot and
does:

1. skip the next few bytes because it's the BIOS Parameter Block
 (BPB) and having values other than 0 there messes boot.
2. Set all segments to $800.
3. DX holds the boot drive no. Push it to SP so it can be popped
 at Collapse OS init.
4. Read Collapse OS binary from boot drive to memory through
 INT13h.
5. Jump to Collapse OS's address 0.
5. Have the proper $aa55 signature at the end of the 512 bytes
 block.

driveno in stable ABI

We use byte $03 in stable ABI to store the boot drive no. On
startup, this boot drive has been placed on SP's TOS be the MBR
and we write it to $03 so that PC/AT floppy drivers pick it up.

3.4 6809 Boot code (code/6809.txt)
Let's walk through 6809 Boot code at B280. This walkthrough is
a bit less detailed that the "canonical" z80 one, which is
contains comments that are common to all CPUs.

This assembles the boot binary. It requires the 6809 assembler
(B50) and cross compilation setup (B200). It requires some

88 3 How to read the code

constants to be set. See doc/bootstrap.txt Page 58 for details.

RESERVED REGISTERS:

* D is the Work register
* S points to PSP
* U points to RSP
* Y holds IP (Interpreter Pointer)

The boot binary is loaded in 2 parts. The first part, "decla-
rations" before xcomp overrides, with the loader word 6809M. The
rest, after xcomp overrides, with 6809C.

As with any boot binary, it begins with the Stable ABI (see
doc/impl.txt Page 21), all of it at this point being a placeholder.

Right after that comes next and execute routines, the heart of
Collapse OS' runtime. 6809 adressing mode come handy here and
it allows us to have quite compact code.

In next, we can read wordref from (Y) and increase IP by 2 in
a single op, then continue to exec, which expects a wordref in
X.

Then, it's a matter of reading the first byte and to bit-
fiddling along with conditional jumps to get to the proper logic
for the word contents, which begins 1 byte after the initial X
position. TFR ops used in XT and DOES are a bit expensive, but
they're hardly avoidable.

Then comes the initialization code, that is, set PSP, RSP, and
call BOOT from the stable ABI.

Then come the base native words. They're all straightforward
and we can see that we benefit greatly from 6809's superior
indexing ops. We rarely use PSH/PUL. We work directly with S
because it's generally faster for what we want to do.

Sometimes, we lack register space so we use the zero page as
a temporary holding area (<> indexing).

FIND: something not so straightforward happens here. Unlike in
z80, we don't hold our string by the tail, so comparison happens
in "forward" mode. We even re-use code from []= for this.
String length, which is held in B, is re-used in the "length
matched!" part of the code (because, you know, it matched...).
However, to go to the beginning of the string in the dict entry,
we need LEAX to go backward, so we NEGB. However, because B hold
our reference length, we need to NEGB again afterwards.

3.5 6502 Boot code (code/6502.txt) 89

3.5 6502 Boot code (code/6502.txt)
6502 boot code lives in arch/6502/blk.fs.

RESERVED REGISTERS:

* X is reserved for PS
* S is reserved for RS

The PS lives in the zero page (ZP) and begins at $ff, growing
downwards. X always points to it.

RS lives in the hardware stack (Page 1) and begins at $1ff.

The IP is held in the ZP at a hardcoded offset, defined by the
IPL (low) and IPH (high) xcomp constants.

Because 6502 has a peculiar way of indirectly addressing memory
(it needs a space in the ZP pointing to the target), we have
INDL (low) and INDH (high) hardcoded offsets in the ZP. These
are preceded by INDJ, which at initialization is filled with $6c
which is the opcode for an indirect jump.

Therefore, you have 2 levels of indirect jumping available to
you once you fill INDL/INDH: Jump to it with "INDL JMP[]," or
jump to where the address described in INDL/INDH points to with
"INDJ JMP,".

In native words, INDL/INDH is very often used as a regular
holding space, a second "N" register. That is often needed
because the 6502 is severly limited compared to other CPUs.

In 6502, the N register has to live in the ZP. It is thus
mandatory to override "'N" constant in xcomp, which by default
lives in SYSVARS (which is not necessarily in the ZP on 6502).

4 Hardware documentation

4.1 Running Collapse OS on real hardware (hw/intro.txt)
Collapse OS is designed to run on ad-hoc post-collapse hardware
build from scavenged parts. These machines don't exist yet.

To make Collapse OS as likely as possible to be useful in a
post-collapse world, we try to give as many examples as possible
of deployment on hacked-up hardware.

For example, we include a recipe for running a Sega Master
System with a PS/2 keyboard plugged to a hacked up controller
cord with an AVR MCU interfacing between the PS/2 connector and
the controller port.

90 4 Hardware documentation

This setup, for which drivers are included in Collapse OS, exist
in only one copy, the copy the author of the recipe made.

However, the idea is that this recipe, which contains schematics
and precise instructions, could help a post-collapse engineer
to hack her way around and achieve something similar. She would
then have a good example of schematics and drivers that are
known to work.

Organisation of this folder

While /doc's top folder contain documentation about software,
this folder contains instructions and schematics about ways to
get Collapse OS running on actual hardware.

Each CPU architecture has its own subfolder with recipes about
specific machines of that arch, while /doc/hw's top folder
contain instructions on broader topics, such as SD cards,
floppies, EEPROM, etc.

Most instructions have companion code in /arch that is conve-
niently wrapped in Makefiles for easy building.

How to use

If you want to run Collape OS on real hardware, browse this
folder's contents until you find something that closely matches
your own hardware (or hardware-to-be).

If you live in a pre-collapse world and are looking for an easy
platform to try Collapse OS on, easy pickings are PC/AT (which
run on modern PCs supporting legacy BIOS), Sega Genesis w/
Everdrive and TI-84+. Those options don't require any soldering.

Drivers

Most instructions in this subfolder tell you to add drivers to
your Collapse OS. What is meant by this is that you need to
rebuild your binary with an augmented xcomp unit. See
doc/bootstrap.txt Page 58 for details, but the short version is:

When instructions tell you to declare constant XXX, then load
drivers from block BYYY and then add word ZZZ to the initial-
ization string, what is meant is that:

1. At the top of your xcomp unit, add constant XXX next to other
 declarations.

4.1 Running Collapse OS on real hardware (hw/intro.txt) 91

2. Between "XCOMPL" and "XCOMPH" loading, insert the loading of
 BYYY. Order may matter.
3. In INIT word definition, call ZZZ. Order may matter.

4.2 Asynchronous Communications Interface Adapters
(hw/acia.txt)
Machines talking to each other is generally useful and they
often use ACIA devices to do so. Collapse OS has drivers for
a few chips of this type and they all implement those words:

TX> c -- Send char c through the device
RX<? c? f -- Poll device for character

The rest of the implementation is device-specific, but those two
words are enough for applications like the Remote Shell and the
XMODEM implementation to work.

Flow control

All drivers in Collapse OS have a similar approach: unbuffered
communication using RTS/CTS handshaking as flow control.

The reason for being unbuffered is simplicity and RAM. The logic
to implement input buffering is non-trivial and, alone, doesn't
buy us much in terms of reliability: you still have to signal
the other side when your buffer is nearly full.

Because we don't really need speed, we adopt a one-byte-at-once
approach: The RTS flag is always high (signalling that it's not
ready for communication) *except* when calling the ACIA driver's
"read" word, which is blocking.

That "read" word will pull RTS low, wait for a byte, then pull
it high again.

This slows down communication, but it's simple and reliable.

Note that this doesn't help making communications with modern
systems (which are much faster than a typical Collapse OS
machine and have their buffer output faster than the RTS flag
can be raised) very much. We have to take extra care, when
communicating from modern system, not to send too much data too
fast. But for COS-to-COS communication, this simple system
works.

Broken hardware

Some designs are broken with this scheme. For example, the

92 4 Hardware documentation

RS2014 SIO module hard-wires CTS to GND because the FTDI
connector doesn't have such a pin (modern computers can always
handle the load).

In these cases, a solution would be to use Break signals as a
workaround, but I prefer avoiding complexity for now. So when
you deal with broken design, you'll have to sidestep it either
by implementing your own Break handling or by lowering com-
munication speed.

4.3 Writing to a AT28 from Collapse OS (hw/at28.txt)

Gathering parts

* A RC2014 Classic
* An extra AT28C64B
* 1x 40106 inverter gates
* Proto board, RC2014 header pins, wires, IC sockets, etc.

Building the EEPROM holder

The AT28 is SRAM compatible so you could use a RAM module for
it. However, there is only one RAM module with the Classic
version of the RC2014 and we need it to run Collapse OS.

You could probably use the 64K RAM module for this purpose, but
I don't have one and I haven't tried it. For this recipe, I
built my own module which is the same as the regular ROM module
but with WR wired and geared for address range $2000-$3fff.

If you're tempted by the idea of hacking your existing RC2014
ROM module by wiring WR and write directly to the range
$0000-$1fff while running it, be aware that it's not that
easy. I was also tempted by this idea, tried it, but on bootup,
it seems that some random WR triggers happen and it corrupts the
EEPROM contents. Theoretically, we could go around that by
putting the AT28 in write protection mode, but I preferred
building my own module.

I don't think you need a schematic. It's really simple.

Writing contents to the AT28

If you wait 10ms between each byte you write, you can write dir-
ectly to the AT28 with regular memory access words. If you don't
wait, the AT28 writing program will fail. Because it's not very
pratical to insert waiting time between each byte writes, you
need another solution.

4.3 Writing to a AT28 from Collapse OS (hw/at28.txt) 93

B321 contains an override routine called AT28$. When you call
this, It defines new "C!" and "!" words and those words ensure
that data is properly written to EEPROM before returning.

Note that because it's new definitions for "C!" and "!", these
are only going to work for direct execution or for words
defined after you've called "AT28$".

When you're done writing to the AT28, you can unset the over-
ride with "FORGET C!".

When polling, AT28 routines also verifies that the final byte in
memory is the same as the byte written. If it's not, it will
place a non-zero value in the IOERR 1b variable. Therefore, if
you want to see, after a big write operation to your AT28,
whether any write failed, do "IOERR C@ .". Re-initialize to zero
before your next write operation.

4.4 Making an ATmega328P blink (hw/avr.txt)
Collapse OS has an AVR assembler and an AVR programmer. If you
have a SPI relay (see doc/hw/spi.txt Page 95), then you almost have
all
it takes to make an ATmega328P blink.

First, read doc/avr.txt Page 50 . You'll see that it tells you how to
build an AVR programmer that works with your SPI relay. You
might already have such device. For example, I use the same
device as the one I connect to my Sparkfun AVR Pocket
Programmer, but I've added an on/off switch to it. I then use
a 6-pin ribbon cable to connect it to my SPI relay.

If you have a SD card connected to the same SPI relay, you'll
face a timing challenge: SD specs specifies that the minimum
SPI clock is 100kHz, but depending on your setup, you might end
up with an effective SCK below that. My own clock setup looks
like this:

I have a RC2014 Dual clock which allows me to have easy access
to many clock speeds, but the slowest option is 300kHz, not
slow enough. My SPI relay has a pin for input clock override,
and I built a pluggable 4040 with a switch that selects a
divisor. I plug that module in my SPI relay, then I plug that
into my RC2014 Dual clock. When doing SD card stuff, I select
the "no division" position, and when I communicate with the
AVR chip, I move the switch to increase the divisor.

Once you've done this, you can test that you can communicate
with your AVR chip by doing "160 163 LOADR" (turn off your
programmer or else it might mess up the SPI bus and prevent you
from using your SD card) and then running:

94 4 Hardware documentation

 1 asp$ aspfl@ .x 0 (spie)

(Replace "1" by your SPI device ID) If everything works fine,
you'll get the value of the low fuse of the chip.

Building the blink binary

A blink program for the ATmega328P in Collapse OS would look
like this:

 50 LOAD (avra) 65 66 LOADR (atmega328p) H@ ORG !
 DDRB 5 SBI, PORTB 5 CBI,
 R16 TCCR0B IN, R16 $05 ORI, TCCR0B R16 OUT,
 R1 CLR,
 L1 LBL! (loop)
 R16 TIFR0 IN,
 R16 0 (TOV0) SBRS,
 L1 (loop) ' RJMP LBL, (no overflow)
 R16 $01 LDI, TIFR0 R16 OUT,
 R1 INC,
 PORTB 5 CBI,
 R1 7 SBRS,
 PORTB 5 SBI,
 L1 (loop) ' RJMP LBL,

See doc/asm.txt Page 80 for details. For now, you'll paste this into
an arbitrary unused block. Let's use 999.

 $ cd arch/z80/rc2014
 $ xsel > blk/999
 $ rm blkfs
 $ make
 $ dd if=blkfs of=/dev/<your-sdcard> bs=1024

Now, with your updated SD card in your RC2014, let's assemble
this binary:

 999 LOAD
 H@ CREATE end ,
 CREATE wordcnt end ORG - 2 / ,
 : write 1 asp$ asperase wordcnt 0 DO
 ORG I 2 * + @ I aspfb! LOOP
 0 aspfp! 0 (spie) ;
 write

The first line assembles a 16 words binary beginning at ORG,
then the rest of the lines are about writing these 16 words to
the AVR chip (see doc/avr.txt Page 50 for details). After you've run
this, if everything went well, that chip if it has a LED

4.4 Making an ATmega328P blink (hw/avr.txt) 95

attached to PB5, will make that LED blink slowly.

4.5 Remote access to Collapse OS (hw/tty.txt)
If you interface to your machine through a serial communication
device and that you have a POSIX environment on the other side,
Collapse OS provides tools in /tools which can be very useful
to you.

Uploading data to Collapse OS' memory is a frequent need
and /tools/upload can help you there.

See details in the /tools folder directly.

4.6 Accessing SD cards (sdcard.txt)
SD cards support the SPI protocol. If you have a SPI relay and
a driver for it that implement the SPI protocol (doc/spi),
you're a few steps away from accessing SD cards!

What you need to do is to add the SDC subsystem to your Collapse
OS binary. First, define SDC_DEVID to a mask selecting the
proper device on your SPI relay (this is what is sent to
"(spie)"). For example, a SDC_DEVID or 1, 2, 4, or 8 would
select SPI device 1, 2, 3 or 4.

The subsystem is loaded with "250 258 LOADR".

Once that subsystem is loaded, you need to create aliases that
will plug into the BLK subsystem (doc/blk). Add this to your
xcomp:

ALIAS SDC@ (blk@)
ALIAS SDC! (blk!)

You can now load BLKSUB and end the rest of your xcomp normally.

At runtime, the SD card that was inserted needs to be initial-
ized. You can do it with SDC$. If you have no error, it means
that the system can spek to your card, that sync is fine, etc.
You can read/write right now. SDC$ needs to run every time a new
card is inserted.

Collapse OS' SDC drivers are designed to read from the very
first 512 sector of the card, mapping them to blocks
sequentially, 2 sectors per block.

4.7 Communicating through SPI (spi.txt)
Many very useful device are able to communicate through the SPI
protocol, for example, SD cards and AVR MCUs. In many cases,
however, CPUs can't "speak SPI" because of their inability to
bit-bang.

96 4 Hardware documentation

In most cases, we need an extra peripheral, which we can build
ourselves, to interface with devices that "speak SPI". We call
this peripheral a SPI relay.

The design of those relays depend on the CPU architecture. See
spi.txt Page 95 in arch-specific folders for more information.

SPI Relay protocol

This protocol enables communication with a SPI relay. This
protocol is designed to support devices with multiple endpoints.
To that end, (spie) takes a device ID argument, with a meaning
that is up to the device itself. To disable all devices, supply
0 to (spie).

We expect relay devices to support only one enabled device at
once. Enabling a specific device is expected to disable the
previously enabled one.

(spie) n -- Enable SPI device
(spix) n -- n Perform SPI exchange (push a number, get a
 number back)

There is no SPI subsystem, but other subsystems depend on the
SPI protocol being fulfilled:

* SD Card subsystem (doc/sdcard)

5 Hardware: z80 hardware interfaces

5.1 Interfacing a PS/2 keyboard (hw/z80/ps2.txt)
Collapse OS needs a way to input commands and keyboards are one
of the most straightforward ways to proceed. The PS/2 protocol
is very widespread and relatively simple.

We explain here how to interface a PS/2 keyboard with a RC2014.

Gathering parts

* A RC2014 Classic that could install the base recipe
* A PS/2 keyboard. A USB keyboard + adapter also works, if it's
 not too recent (if it still speaks PS/2).
* A PS/2 female connector.
* ATtiny85/45/25 (main MCU for the device)
* 74xx595 (shift register)
* 40106 inverter gates
* Diodes for A*, IORQ, RO.

5.1 Interfacing a PS/2 keyboard (hw/z80/ps2.txt) 97

* Proto board, RC2014 header pins, wires, IC sockets, etc.
* AVRA (https://github.com/hsoft/avra). The code for this recipe
 hasn't been translated to Collapse OS' AVR assembler yet.

Building the PS/2 interface

Let's start with the PS/2 connector (see img/ps2-conn.png Page 98),
which has two pins.

Both are connected to the ATtiny45, CLK being on PB2 to have
INT0 on it.

The DATA line is multi-use. That is, PB1 is connected both to
the PS/2 data line and to the 595's SER. This saves us a
precious pin.

The ATtiny 45 (img/ps2-t45.png Page 99) hooks everything together. CE
comes from the z80 bus (img/ps2-z80.png Page 100).

The 595 (img/ps2-595.png Page 98) allows us to supply the z80 bus with
data within its 375ns limits. SRCLR is hooked to the CE line so
that whenever a byte is read, the 595 is zeroed out as fast as
possible so that the z80 doesn't read "false doubles".

The 595, to have its SRCLR becoming effective, needs a RCLK
trigger, which doesn't happen immediately. It's the ATtiny45, in
its PCINT interrupt, that takes care of doing that trigger (as
fast as possible).

Our device is read only, on one port. That makes the "Chip
Enable" (CE) selection rather simple. In my design, I chose the
IO port 8, so I inverted A3. I chose a 40106 inverter to do
that, do as you please for your own design.

I wanted to hook CE to a flip flop so that the MCU could relax a
bit more w.r.t. reacting to its PB4 pin changes, but I didn't
have NAND gates that are fast enough in stock, so I went with
this design. But otherwise, I would probably have gone the
flip-flop way. Seems more solid.

Then, all you need to do is to assemble code/ps2ctl.asm and load
it onto your ATtiny.

Using the PS/2 interface

To use this interface, you have to build a new Collapse OS
binary. This binary needs two things.

First, we need a "(ps2kc)" routine (see doc/ps2). In

98 5 Hardware: z80 hardware interfaces

this case, it's easy, it's ": (ps2kc) 8 PC@ ;". Then, we can
load PS/2 subsystem. You add "411 414 LOADR". Then, at
initialization, you add "PS2$". You also need to define PS2_MEM
at the top. You can probably use "SYSVARS + $aa".

The PS/2 subsystem provides "(key)" from "(ps2kc)".

For debugging purposes, you might not want to go straight to
plugging PS/2 "(key)" into the system. What I did myself was to
load the PS/2 subsystem *before* ACIA (which overrides with its
own "(key)") and added a dummy word in between to access PS/2's
key.

5.2 PS/2 Connector (hw/z80/img/ps2-conn.png)

5.3 PS/2 74xx595 (hw/z80/img/ps2-595.png)

5.4 PS/2 ATtiny45 (hw/z80/img/ps2-t45.png) 99

5.4 PS/2 ATtiny45 (hw/z80/img/ps2-t45.png)

100 5 Hardware: z80 hardware interfaces

5.5 PS/2 Z80 (hw/z80/img/ps2-z80.png)

5.6 Building a SPI relay for the z80 (hw/z80/spi.txt)
In this recipe, we build a SPI relay (see /doc/hw/spi.txt Page 95) for
a RC2014.

Gathering parts

* A RC2014 Classic
* A proto board + header pins with 39 positions so we can make
 a RC2014 card.
* Diodes, resistors and stuff

5.6 Building a SPI relay for the z80 (hw/z80/spi.txt) 101

* 40106 (Inverter gates)
* 74xx138 (Decoder)
* 74xx375 (Latches)
* 74xx125 (Buffer)
* 74xx161 (Binary counter)
* 74xx165 (Parallel input shift register)
* 74xx595 (Shift register)

Building the SPI relay

The schematic (img/spirelay.jpg Page 102) works well with the SD Card
subsystem (B420). Of course, it's not the only possible design
that works, but I think it's one of the most straighforwards.

This relay communicates through the z80 bus with 2 ports, DATA
and CTL and allows up to 4 devices to be connected to it at
once, although only one device can ever be active at once. This
schema only has 2 (and the real prototype I've built from it),
but the '375 has room for 4. In this schema, DATA is port 4, CTL
is port 5.

We activate a device by sending a bitmask to CTL, this will end
up in the '375 latches and activate the SS pin of one of the
device, or deactivate them all if 0 is sent.

You then initiate a SPI exchange by sending a byte to send to
the DATA port. This byte will end up in the '165 and the '161
counter will be activated, triggering a clock for the SPI
exchange. At each clock, a bit is sent to MOSI from the '161 and
received from MISO into the '595, which is the byte sent to the
z80 bus when we read from DATA.

When the '161 is wired to the system clock, as it is in the
schema, two NOPs are a sufficient delay between your DATA write
and subsequent DATA read.

However, if you build yourself some kind of clock override and
run the '161 at something slower than the system clock, those 2
NOPs will be too quick. That's where that '125 comes into play.
When reading CTL, it spits RUNNING into D0. This allows you to
know when the result of the SPI exchange is ready to be fetched.
Make sure you AND away other bits, because they'll be garbage.

The '138 is to determine our current IORQ mode (DATA/CTL and
WR/RO), the '106 is to provide for those NOTs sprinkled around.

Please note that this design is inspired by
https://www.ecstaticlyrics.com/electronics/SPI/fast_z80_interface.
html

102 5 Hardware: z80 hardware interfaces

Advice 1: Make SCK polarity configurable at all 3 endpoints (the
595, the 165 and SPI connector). Those jumpers will be useful
when you need to mess with polarity in your many tinkering
sessions to come.

Advice 2: Make input CLK override-able. SD cards are plenty fast
enough for us to use the system clock, but you might want to
interact with devices that require a slower clock.

Driving the relay

There is a provider for the SPI protocol (doc/spi) that works
with this device in B312. It needs SPI_DATA and SPI_CTL
constants which in this case are 4 and 5 respectively.

When writing to SPI_CTL, we expect a bitmask of the device to
select, with 0 meaning that everything is de-selected. Reading
SPI_CTL returns 0 if the device is ready or 1 if it's still
running an exchange. Writing to SPI_DATA initiates an exchange.

5.7 SPI Relay Schematic (hw/z80/img/spirelay.jpg)

5.8 Using Zilog's SIO as a console (hw/z80/sio.txt) 103

5.8 Using Zilog's SIO as a console (hw/z80/sio.txt)
The RC2014 has an optional module called the Dual Serial Module
SIO/2 which is built around Zilog's SIO chip. This module is
nice because when paired with the Dual Clock Module and when
using port B, it's possible to run a UART with a baud rate lower
than 115200.

Collapse OS has a driver for it (although for now, only port A
is supported by it). Let's use it.

* Let's assume a xcomp unit similar to the one in
 /arch/z80/rc2014.
* Locate SIO driver in /arch/z80/rc2014/blk
* The driver main page gives you references for declarations and
 for code.
* In the base xcomp unit, replace ACIA declarations with SIO's
* Replace ACIA code with SIO's
* At the bottom, replace "ACIA$" with "SIO$".

Rebuild the binary and you're done. "(key)" and "(emit)" will
go through the SIO.

6 Hardware: Sega Master System (z80 based)

6.1 Sega Master System (hw/z80/sms/intro.txt)
The Sega Master System was a popular gaming console running on
z80. It has a simple, solid design and, most interestingly of
all, its even more popular successor, the Megadrive (Genesis)
had a z80 system for compatibility!

This makes this platform *very* scavenge-friendly and worth
working on.

SMS Power[1] is an awesome technical resource to develop for
this platform and this is where most of my information comes
from.

This platform is tight on RAM. It has 8k of it. However, if you
have extra RAM, you can put it on your cartridge.

Gathering parts

* A Sega Master System or a MegaDrive (Genesis).
* A Megadrive D-pad controller.
* A way to get an arbitrary ROM to run on the SMS. Either
 through a writable ROM cartridge or an Everdrive[2].

104 6 Hardware: Sega Master System (z80 based)

Hacking up a ROM cart

SMS Power has instructions to transform a ROM cartrige into a
battery-backed SRAM one, which allows you to write to it through
another device you'll have to build. This is all well and good,
but if you happen to have an AT28 EEPROM, things are much
simpler!

Because AT28 EEPROM are SRAM compatible, they are an
almost-drop-in replacement to the ROM you'll pop off your
cartridge. AT28 are a bit expensive, but they're so handy! For
SMS-related stuff, I recommend the 32K version instead of the 8K
one because fitting Collapse OS with fonts in 8K is really
tight.

The ROM cartridge follow regular ROM pinout, which means that
A14 are just under VCC, where WE is on the AT28. We need WE to
be perma-disabled and A14 to be properly connected.

1. De-solder the ROM
2. Take a 28 pins IC socket
3. Cut off its WE pin (the one just under VCC), leaving a tiny
 bit of metal.
4. Hard-wire it to VCC so that WE is never enabled.
5. Solder your socket where the ROM was.
6. With a cutter, cut the trace leading to A14.
7. Wire A14 to the trace just under WE (which doesn't actually
 touch WE because we've cut the IC socket's pin).
8. Insert Collapse OS-filled EEPROM in socket.

As simple as this! (Note that this has only been tested on a SMS
so far. I haven't explored whether this can run on a megadrive).

Build the ROM

Running "make" in /arch/z80/sms will produce a "os.sms"
ROM that can be put as is on a SD card to the everdrive or
flashed as is on a writable ROM cart. Then, just run the thing!

To run Collapse OS in a SMS emulator, run "make emul".

Usage

Our input is a D-Pad and our output is a TV. The screen is 32x28
characters. A bit tight, but usable.

D-Pad is used as follow:

6.1 Sega Master System (hw/z80/sms/intro.txt) 105

* There's always an active cursor. On boot, it shows "a".
* Up/Down increase/decrease the value of the cursor.
* Left/Right does the same, by increments of 5.
* A button is backspace.
* B button skips cursor to next "class" (number, lowcase,
 upcase, symbols).
* C button "enters" cursor character and advance the cursor by
 one.
* Start button is like pressing Return.

Of course, that's not a fun way to enter text, but using the
D-Pad is the easiest way to get started which doesn't require
soldering. Your next step after that would be to build a PS/2
keyboard adapter! See smsps2.txt Page 106

[1]: http://www.smspower.org
[2]: https://krikzz.com

6.2 Writing to a AT28 from a SMS (hw/z80/sms/at28.txt)
Writing on the EEPROM that is currently running Collapse OS is
as easy as enabling the WE pin on your hacked up cartridge. How-
ever, this is not practical: If you want to deploy Collapse OS
(or something else) to another machine, or even if you want to
upgrade your current Collapse OS, you will likely want to write
to another EEPROM.

The easiest way to do so is to build yourself a dual EEPROM
cartridge. It's very similar to a simple cartridge, except it
has two AT28 sockets and a '139 decoder to select between the
two.

The design proposed here sacrifices access to the upper 16K of
your AT28C256 for the sake of simplicity because it uses A14 as
the chip selector. Therefore, addrs $0000-$3fff belong to the
first chip and $4000-$7fff belong to the second.

You can see the schematic in dual-at28.jpg Page 106 .

The schematic enables WE on both EEPROMs, but in my actual
prototype, I hard-wired the first chip's WE to high because I
never want to write to it, despite bugs I might introduce in
hardware or software (I try a lot of dangerous stuff on my
machines...).

On top of that, you will likely want to add a physical CE-
inhibit jumper (a jumper hard-wired to VCC) on the AT28 socket.
The reason for this is that if the EEPROM you have on your
socket ends with a SEGA TMR signature, it will be a wrong one,
but it will still be picked up by the BIOS and Collapse OS will
refuse to boot. A CE-inhibit switch that you can remove after

106 6 Hardware: Sega Master System (z80 based)

boot will solve the problem.

6.3 SMS Dual EEPROM (hw/z80/sms/img/dual-at28.jpg)

6.4 PS/2 keyboard on the SMS (hw/z80/sms/ps2.txt)
Using the shell with a D-pad on the SMS is doable, but not fun
at all! We're going to build an adapter for a PS/2 keyboard to
plug as a SMS controller.

The PS/2 logic will be the same as the regular PS/2 adapter (see
doc/hw/ps2.txt Page 96) but instead of interfacing directly with the
bus, we interface with the SMS' controller subsystem (that is,
what we poke on ports $3f and $dc).

6.4 PS/2 keyboard on the SMS (hw/z80/sms/ps2.txt) 107

How will we achieve that? A naive approach would be "let's limit
ourselves to 7bit ASCII and put TH, TR and TL as inputs". That
could work, except that the SMS will have no way reliable way
(except timers) of knowing whether polling two identical values
is the result of a repeat character or because there is no new
value yet.

On the AVR side, there's not way to know whether the value has
been read, so we can't do like on the RC2014 and reset the value
to zero when a RO request is made.

We need communication between the SMS and the PS/2 adapter to be
bi-directional. That bring the number of usable pins down to 6,
a bit low for a proper character range. So we'll fetch each
character in two 4bit nibbles. TH is used to select which nibble
we want.

TH going up also tells the AVR MCU that we're done reading the
character and that the next one can come up.

As always, the main problem is that the AVR MCU is too slow to
keep up with the rapid z80 polling pace. In the regular adapter,
I hooked CE directly on the AVR, but that was a bit tight
because the MCU is barely fast enough to handle this signal
properly. I did that because I had no proper IC on hand to build
a SR latch.

In this recipe, I do have a SR latch on hand, so I'll use it. TH
triggering will also trigger that latch, indicating to the MCU
that it can load the next character in the '164. When it's done,
we signal the SMS that the next char is ready by resetting the
latch. That means that we have to hook the latch's output to TR.

Nibble selection on TH doesn't involve the AVR at all. All 8
bits are pre-loaded on the '164. We use a 4-channel multiplexer
to make TH select either the low or high bits.

Gathering parts

* A SMS that can run Collapse OS
* A PS/2 keyboard. A USB keyboard + PS/2 adapter should work,
 but I haven't tried it yet.
* A PS/2 female connector.
* A SMS controller you can cannibalize for the DB-9 connection.
 A stock DB-9 connector isn't deep enough.
* ATtiny85/45/25 (main MCU for the device)
* 74xx164 (shift register)
* 74xx157 (multiplexer)
* A NOR SR-latch. I used a 4043.
* Proto board, wires, IC sockets, etc.

108 6 Hardware: Sega Master System (z80 based)

Historical note

As I was building this prototype, I was wondering how I would
debug it. I could obviously not hope for it to work as a
keyboard adapter on the first time, right on port A, driving the
shell. I braced myself mentally for a logic analyzer session and
some kind of arduino-based probe to test bit banging results.

And then I thought "why not use the genesis?". Sure, driving the
shell with the D-pad isn't fun at all, but it's possible. So I
hacked myself a temporary debug kernel with a "a" command doing
a probe on port B. It worked really well!

It was a bit less precise than logic analyzers and a bit of
poking-around and crossing-fingers was involved, but overall, I
think it was much less effort than creating a full test setup.

There's a certain satisfaction to debug a device entirely on
your target machine...

Building the PS/2 interface

See schematic at img/ps2-to-sms.png Page 109 . The PS/2-to-AVR part is
identical to doc/hw/ps2.txt Page 96 .

We control the '164 from the AVR in a similar way to what we did
in rc2014/ps2, that is, sharing the DATA line with PS/2 (PB1).
We clock the '164 with PB3. Because the '164, unlike the '595,
is unbuffered, no need for special RCLK provisions.

Most of the wiring is between the '164 and the '157. Place them
close. The 4 outputs on the '157 are hooked to the first 4 lines
on the DB-9 (Up, Down, Left, Right).

In my prototype, I placed a 1uf decoupling cap next to the AVR.
I used a 10K resistor as a pull-down for the TH line (it's not
always driven).

If you use a 4043, don't forget to wire EN. On the '157, don't
forget to wire ~G.

The code expects a SR-latch that works like a 4043, that is, S
and R are triggered high, S makes Q high, R makes Q low. R is
hooked to PB4. S is hooked to TH (and also the A/B on the '157).
Q is hooked to PB0 and TL.

6.4 PS/2 keyboard on the SMS (hw/z80/sms/ps2.txt) 109

Building the firmware

The code for the ATtiny is in B501. It is built with the AVR
assembler (doc/asm/avr.txt Page 80). Once built, the binary begins at
ORG and can be sent to the ATtiny using the AVR programmer
(doc/avr.txt Page 50).

Building the binary

You build the binary in the same way as with the regular SMS,
but use xcompkbd.fs instead of xcomp.fs (in arch/z80/sms).

The xcomp is for a keyboard plugged on port A. For port B,
replace (ps2kcA) with (ps2kcB).

6.5 PS/2 interface (hw/z80/sms/img/ps2-to-sms.png)

6.6 SMS pad (hw/z80/sms/pad.txt)
There is a driver for getting (key?) input from a SMS pad at
B335.

It conveniently exposes an API to read the status of a SMS pad
on port A. Moreover, implement a mechanism to input arbitrary
characters from it. It goes as follow:

* Direction pad select characters. Up/Down move by one,
 Left/Right move by 5
* Start acts like Return
* A acts like Backspace
* B changes "character class": lowercase, uppercase, numbers,
 special chars. The space character is the first among special

110 6 Hardware: Sega Master System (z80 based)

 chars.
* C confirms letter selection

This module needs CELL! (see doc/grid.txt Page 62) to display
selection
on screen during (key?).

_status (-- n)

Returns a status bitmask for port A. Bits, from MSB to LSB:
Start - A - C - B - Right - Left - Down - Up
Each bit is high when button is unpressed and low if button is
pressed. When no button is pressed, $ff is returned.
This logic below is for the Genesis controller, which is modal.
TH is an output pin that switches the meaning of TL and TR. When
TH is high (unselected), TL = Button B and TR = Button C. When
TH is low (selected), TL = Button A and TR = Start.)

6.7 Building a SPI relay for the SMS (hw/z80/sms/spi.txt)
The I/O space on the SMS is, sadly, entirely taken. If you had
the idea of somehow plugging a SPI relay that is similar the one
on the RC2014, you can forget about it. Only A7, A6 and A0 are
considered by the 8 builtin peripherals on the SMS and trying to
do an IN or OUT to any address is going to end up conflicting
with one of them.

What we can do to achieve SPI communication with the SMS is to
use the B controller port. It can already do bit banging. It's
slow, but it works.

One problem we have, however, is that only 2 pins can be set as
output. We need 3. What I did, and it works with SD cards, is
to hard-wire CS to GND so that it's always turned on. The
downside of this is that if you go out-of-sync with the SPI
device, you have to physically disconnect it and reconnect it
to solve the sync problem.

The advantage of using port B is that the connector is really
simple, you don't even need a schematic:

* CLK to TH
* DI to TR
* DO to Up
* CS to GND

Add pull-downs to CLK and DI to avoid messing up with your
device (it's always on, remember).

6.7 Building a SPI relay for the SMS (hw/z80/sms/spi.txt) 111

Building the binary

The SPI driver is in B622, which depends on controller port
routines at B625-B626. A ready-to-use xcomp unit is at
arch/z80/sms/xcompsdc.fs.

The SMS emulator has support for a SPI relay based on the B
controller port and can emulate a SD card plugged in it with the
"-c" argument. If it works in the emulator, it has good chances
of running on the real thing.

6.8 VDP driver (hw/z80/sms/vdp.txt)
The driver for the SMS VDP lives at B330. It requires code from
the TMS9918 driver as well as a 7x7 font tied to a ~FNT dict
entry.

It takes care of properly initializing Mode 4 and of sending
the font to VDP's memory in a way that it will understand. It
does so through the _sfont word, which works like this:

Each row in ~FNT is a row of the glyph and there is 7 of
them. We insert a blank one at the end of those 7. For each
row we set, we need to send 3 zero-bytes because each pixel in
the tile is actually 4 bits because it can select among 16
palettes. We use only 2 of them, which is why those bytes
always stay zero.

7 Hardware: Other z80 based devices

7.1 Dan's Z80 Single Board Computer (hw/z80/dan.txt)
This single board computer is a project created by Daniel Marks
that can be found on the github respository:

http://www.github.com/profdc9/Z80SBC

A copy of its schematic is in img/dan.pdf

It is based on Grant Searle's CP/M Z80SBC and is intended to use
components that should be available, along with the Z80, long
into the future. Exotic parts such as uncommon LSTTL (e.g.
LSTTL670) are eschewed here. The parts needed are:

1. 1 X Z84C00 (7.3728 MHz, 6 MHz may be overclocked, or 8 to 20
 MHz versions)
2. 1 X Z80 DART or SIO/2. The SIO/0 or SIO/1 can be adapted as
 well, however, the pinouts for the DART and SIO/2 are shown.
3. 1 X 82C55 peripheral interface. An extremely common general
 purpose IO chip used in the IBM PC as well as countless ISA
 adapter cards.
4. 3 X 74HCT32/74LS32 or gates (probably 74HC32 would work in a

112 7 Hardware: Other z80 based devices

 pinch with other CMOS derivative parts)
5. 2 X 74HC00
6. 1 X 74LS138/74HCT138
7. 1 X HM628128 or AS6C1008 128k X 8 static RAM. A 62256 (32k X
 8) could be adapted as well if the lower part of memory is
 set to $8000.
8. 1 X 28C256 32k X 8 flash ROM. 27256 ROMs may be available as
 scrap BIOS chips from old PCs or ISA cards as well, but if
 its UV erase you may have to get creative.
9. 1 X 74HC595 serial in, parallel out shift register
10. 1 X 74HC165 parallel in, serial out shift register
11. 1 X 74HC393 ripple counter
12. 1 X MAX232 for logic level to RS232 conversion

At boot time, the 28C256 ROM is mapped as well as 32k/48k of the
RAM. When the IO address $38 is written to, the ROM is mapped
out and the entire memory address space is 64k RAM. The device
includes two serial ports, a SPI port for supporting two SD
cards and other SPI hardware, a CompactFlash port, a composite
video output port, and a PS/2 keyboard input.

The IO map is:

$00-$03 SIO/DART
$10-$17 CompactFlash port
$18-$1B 8255 Port
$20 SPI input/output
$38 Disable ROM

There is a PS/2 keyboard port with the clock line of the PS/2
keyboard wired to the SYNCA/RIA input of the SIO/DART. An
interrupt is triggered on the falling edge of the PS/2 clock
line, and an interrupt routine assembles input byte codes from
the keyboard to be passed to the operating system. The PS/2 data
line is wired to PC7 on the 8255.

The SPI input/output circuit operates simply by writing a byte
to port $20, and reading the input byte also from port $20. The
chip select lines for the SD cards are PC0 and PC1 on the 8255.
The SPI may be clocked either by the CPU clock or by a second
clock, for example, at 16 MHz. The SPI circuit is also used to
implement the software composite video output. If it is used for
video, the processor and SPI must both be clocked at 7.3728 MHz.

Other pins on the 8255 are left uncommitted and may be used, for
example, to implement a ROM programmer or interface to other
external hardware.

A makeshift composite video output is implemented through
software on the Z80. The MOSI pin of the SPI (74HC165) shifts
out pixel data, and the PC3 pin on the 8255 is used to generate

7.1 Dan's Z80 Single Board Computer (hw/z80/dan.txt) 113

the SYNC signal. The interface to the video is extremely simple
being just a couple of resistors. The output video is monochrome
NTSC format with 262 lines per frame, 60 frames per second, with
246 lines of picture and 16 lines of vertical blanking at a
horizontal scan rate of 15.752 kHz. Because the Z80 is used to
scan the video, the video scanning stops whenever the Z80 has to
do work. This is like the Sinclair ZX80/ZX81 of old, but like
that computer, this video is generated with minimal hardware.
The video output is set up to show the video whenever the
operating system is waiting for a key to be input.

The operating system may also be configured to use the serial
port as the terminal. SIO/DART port B is the port wired to the
logic level converter. If connecting to a PC, a null modem
adapter is needed. SIO/DART port A may be used with a
conventional TTL USB serial adapter. The serial port parameters
are 115200 bps, 8 bits, no parity, 1 stop bit. There are jumpers
so that CTSA and CTSB may be hardwired to ground or can be
controlled through the serial port.

Jumpers JP6 and JP7 control the mapping of the flash memory. If
JP6 is set to the 32k setting and JP7 is set to the lower 16k
setting, the entire of the 32k is mapped to $0000-$7fff on
startup. If JP6 is set to the 16k setting, then if JP7 is set to
the lower 16k setting, the lower 16k is mapped to $0000-$3fff,
otherwise the upper 16k is mapped to $0000-$3fff. This enables
two different ROMS to be swapped out, for example, a
conventional loader bios could be placed in the low 16k
($0000-$3fff in the 28C256), and Collapse OS in the upper 16k
($4000-$7fff on the 28C256), and these two may be switched
between with a jumper.

I used a TL866II to write the 28C256 ROM. I may work on a ROM
writer that can use the 8255 itself to write another 28C256,
thus enabling a CollapseOS ROM to write another CollapseOS ROM.
This will probably require a couple of 74HC595s to be externally
wired to provide address lines to the ROM.

Configuring Collapse OS

When configuring Collapse OS, the xcomp.fs file has a few parts
that need to be changed to reconfigure the kernel.

VID_WDTH is number of bytes across per scan line (24 is the
 minimum)
VID_SCN is number of display scan lines (246 for full NTSC,
 123 for doubled lines)
VID_VBL is number of vertical blanking interval lines
VID_LN is number of lines to report to the GRID driver

114 7 Hardware: Other z80 based devices

If memory is constrained, then the scan lines can be doubled,
and the number of bytes across the scan line may be reduced to a
minimum of 24, so the minimum frame buffer size is 123 X 24 =
2952 bytes. As given the frame buffer size is 246 X 66 = 16236
bytes.

There are 2 (vidfr) implementations, a single and a double.
LOAD the proper blocks in your xcomp unit.

An example configuration lives in /arch/z80/dan.

7.2 TRS-80 Model 4p (hw/z80/trs80-4p.txt)
The TRS-80 (models 1, 3 and 4) are among the most popular z80
machines. They're very nicely designed and I got my hands on a
4p with two floppy disk drives and a RS-232 port. In this
recipe, we're going to get Collapse OS running on it.

Reference documentation

These documents are recommended:

* TRS-80 Model 4/4P Technical Reference Manual
* Disk System Owner's Manual - TRS-80 Model 4/4P
* Service Manual - TRS-80 Model 4P, 4P Gate Array
* FDC 1791-02 datasheet from Standard Microsystems Corporation

Memory map and interrupts

Collapse OS runs on the 4P in memory mode 2: $0000-f3ff is all
RAM, $f400-f7ff maps to the keyboard, $f800-ffff maps to video.

Boot binary begins at $0000, HERESTART begin right after the
binary, PS_ADDR is $f3ff.

$10 bytes are allocated to drivers SYSVARS:

00 KBD input buffer (char)
01 KBD input buffer (shift flags)
02 KBD debouncing flag
03-05 GRID_MEM
06 Floppy drive selection mask
07 Floppy drive "current operation" (rd or wr) alias
09 FD0 Current disk offset
0b FD1 Current disk offset
0d Character under the cursor

Except for RTC interrupts, all other interrupts are disabled.

7.2 TRS-80 Model 4p (hw/z80/trs80-4p.txt) 115

Booting

The bootloader, placed in sector 1 of track 0, directly pokes
(the 4K boot ROM is not used) FDC ports in order to read tracks
1 and 2 (36 sectors, 9KB) into memory $0000 and then jump to
$0000.

It also does a few initializations that are then assumed by the
OS:

* 80x24 video mode, page 1
* Memory map 2
* Interrupt enabled, IM 1, with RTC interrupts enabled
* "FAST" mode (4MHz)
* External I/O disabled

In case of an error (CRC error, Lost Data, sector not found), a
character corresponding to the error is placed on the screen and
we abort (infinite loop).

Keyboard

The 4P doesn't poll its keyboard itself, software has to do it.
To do it reliably, we do so during Real Time Clock interrupts
(60Hz in 4MHz mode). During each poll, we do this:

1. Decode pressed key (7 first columns)
2. Debounce check. If no key is pressed, reset debounce flag.
3. If debounced, fill input buffer with char and 8th row,
 which contains shift status.

If you look at the hardware keyboard mapping, you'll see that
most of it is straightforward to decode, with exceptions (@ and
the , to / range). During the interrupt, we don't care about the
exceptions and simply record the first row yielding a nonzero
keypress.

Rows 0 to 5 have the particularity of having columns with cont-
iguous ASCII code. This makes them rather straightforward to
decode. Row 6 is special because the ASCII codes are hetero-
genous, so we need a hardcoded map.

Row 7 is for keys that, when pressed, aren't considered a
"keypress" (shift keys).

To avoid repeats, we debounce the keyboard after a keypress,
that is, when a key is pressed in rows 0 to 6, we wait until we
go back to a "no key pressed" state before recording another
press.

116 7 Hardware: Other z80 based devices

When (key?) polls for keypress, it checks the input buffer and
also applies little shift rules and exceptions to the raw value
in the buffer so that it yields the proper character.

The keyboard doesn't yield the whole visible ASCII range in a
straightforward manner. To allow a full range, we make left and
right shift behave differently.

Left shift is the "regular shift". It yields values on labels
(shifted @ yields `). Right shift allows the reaching of chars
like [] and {}. These are the yields:

, --> [
= --> \
. -->]
/ --> ^
0 --> _
1 --> {
2 --> |
3 --> }
4 --> ~
5 --> DEL

(it makes more sense when looking at the ASCII table.)

You will notice, also, that we take extra step to ensure that
when we check, in (key?) whether we have a key press, we only
check the LSB. This might seem illogical at first, but this is
because the polling interrupt might happen at any time,
including during the "0 [*TO] KBDBUF" part.

BREAKING away

In Collapse OS, the BREAK key gets a special treatment. It is
checked during the polling interrupt and, when pressed, calls
QUIT right away. This allows you to escape infinite loops.

Because it's QUIT being called and not ABORT, PS is preserved.
Because it can quit at any time (except when interrupts are
disabled), you can end up with extra garbage on PS after QUIT.

Video

Video in the 4P is very straightforward: the screen starts at
$f800 and is 1 char per byte in memory. We always run in 80
columns mode and use the Grid subsystem (doc/grid.txt Page 62).

We only support the 80x24 mode, which is enabled in the

7.2 TRS-80 Model 4p (hw/z80/trs80-4p.txt) 117

bootloader.

The cursor is solid and doesn't blink. In CURSOR!, we simply
replace the character at target pos with $bf (a solid rectangle)
and place old character in UNDERCUR buffer in SYSVARS.

The NEWLN implementation scrolls contents when the bottom of the
screen is reached.

Floppy

In our 179X FDC driver, we hardcode for MFM (double density).
We seek (with verify) implicitly before each read or write
operation and, like TRS-DOS, we enable Write Precompensation for
tracks higher than 21.

If an error occurs, "FD err" is raised, with the corresponding
status number (which should normally contain the error).

There isn't yet any auto-retry mechanism on error. This results
in occasional failures (mostly CRC) which don't occur on TRS-DOS
(I suspect it auto-retries on errors).

Collapse OS doesn't yet have any way to format floppies. For
now, they need to be formatted through TRS-DOS.

RS-232

The RS-232 driver implements TX> and RX<? which the Remote shell
and the XMODEM application use. Before using it, it has to be
initialized with CL$, which takes a single bauds argument. This
argument is not a direct bauds rating, it's a numerical mapping:

00 50 01 75 02 110 03 134.5
04 150 05 300 06 600 07 1200
08 1800 09 2000 0a 2400 0b 3800
0c 4800 0d 7200 0e 9600 0f 19200

For example, "$0e CL$" initializes the RS-232 at 9600 bauds.

The boot disk

As already stated, the boot disk has these properties:

* Double Density
* 256b per sector, 18 sectors per track
* Bootloader in sector 1, track 0

118 7 Hardware: Other z80 based devices

* Collapse OS binary in tracks 1 and 2, 9KB max.

If you can produce this floppy through external means, you don't
need the instructions below. However, because this can be
tricky, the easiest way to proceed is to have a RS-232 equipped
TRS-80 4P as well as TRS-DOS 6.x and use DOS to construct that
floppy.

Creating the boot disk with TRS-DOS

We need to send sizeable binary programs through the RS-232 port
and then run it. The big challenge here is ensuring data
integrity. Sure, serial communication has parity check, but it
has no helpful way of dealing with parity errors. When parity
check is enabled and that a parity error occurs, the byte is
simply dropped on the receiving side. Also, a double bit error
could be missed by those checks.

What we'll do here is to ping back every received byte back and
have the sender do the comparison and report mismatched data.

Another problem is ASCII control characters. When those are sent
across serial communication channels, all hell breaks lose. When
sending binary data, those characters have to be avoided. We use
tools/ttysafe for that.

Does TRSDOS have a way to receive this binary inside these
constraints? Not to my knowledge. As far as I know, the COMM
program doesn't allow this.

What are we going to do? We're going to punch in a binary
program to handle that kind of reception! You're gonna feel real
badass about it too...

Testing serial communication

The first step here is ensuring that you have bi-directional
serial communication. To do this, first prepare your TRS-80:

 set *cl to com
 setcomm (word=8,parity=no,bauds=9600)

The first line loads the communication driver from the COM/DRV
file on the TRSDOS disk and binds it to *cl, the name generally
used for serial communication devices. The second line sets
communication parameters in line with what is generally the
default on modern machine.

Then, you can run "COMM *cl" to start a serial communication

7.2 TRS-80 Model 4p (hw/z80/trs80-4p.txt) 119

console.

Then, on the modern side, use your favorite serial communication
program and set the tty to 9600 baud with option "raw". Make
sure you have -parenb.

If your line is good, then what you type on either side should
echo on the other side. If it does not, something's wrong.
Debug.

Building the binaries

You're reaching the point where you need binaries. You can build
them with "make" in /arch/z80/trs80, which will yield:

* os.bin: The Collapse OS binary
* boot.bin: The bootloader
* recv.bin: The binary receiver we're going to need to manually
 punch in the machine.

Punching in the goodie

As stated in the overview, we need a program on the TRS-80 that:

1. Listens to *cl
2. Echoes each character back to *cl
3. Adjusts ttysafe escapes
4. Stores received bytes in memory

You're in luck: that program has already been written and it's
in recv.bin. Open it with a hex editor to view its contents.
That's what you have to punch in. Not so bad eh?

It can run from any offset (all jumps in it are relative), but
it is hardcoded to write to $3000. Make sure you don't place it
in a way to be overwritten by its received data.

You're looking at recv.fs and wondering what is that
COM_DRV_ADDR constant? That's the DCB handle of your *cl device.
You will need to get that address before you continue. Go read
the following section and come back here. If your DCB is
different from COM_DRV_ADDR, you'll have to change it and run
"make" again.

How will you punch that in? The "debug" program! This very
useful piece of software is supplied in TRSDOS. To invoke it,
first run "debug (on)" and then press the BREAK key. You'll get
the debug interface which allows you to punch in any data in any
memory address. Let's use $5000 which is the offset it's

120 7 Hardware: Other z80 based devices

designed for (high enough not to be overwritten).

For reference: to go back to the TRSDOS prompt, it's
"o<return>".

First, display the $5000-$503f range with the d5000<space>
command (I always press Enter by mistake, but it's space you
need to press). Then, you can begin punching in with
h5000<space>. This will bring up a visual indicator of the
address being edited. Punch in the stuff with a space in between
each byte and end the edit session with "x".

Getting your DCB address

In the previous step, you need to set COM_DRV_ADDR to your "DCB"
address for *cl. That address is your driver "handle". To get
it, first get the address where the driver is loaded in memory.
You can get this by running "device (b=y)". That address you see
next to *cl? that's it. But that's not our DCB.

To get your DBC, go explore that memory area. Right after the
part where there's the *cl string, there's the DCB address
(little endian). On my setup, the driver was loaded in $0ff4
and the DCB address was 8 bytes after that, with a value of
$0238. Don't forget that z80 is little endian. 38 will come
before 02.

Saving that program for later

If you want to save yourself typing for later sessions, why not
save the program you've painfully typed to disk? TRSDOS enables
that easily. Let's say that you typed your program at $5000 and
that you want to save it to RECV/CMD on your second floppy
drive, you'd do:

 dump recv/cmd:1 (start=X'5000',end=X'5030',tra=X'5000')

A memory range dumped this way will be re-loaded at the same
offset through "load recv/cmd:1". Even better, TRA indicates
when to jump after load when using the RUN command. Therefore,
you can avoid all this work above in later sessions by simply
typing "recv" in the DOS prompt.

Note that you might want to turn "debug" off for these commands
to run. I'm not sure why, but when the debugger is on, launching
the command triggers the debugger.

7.2 TRS-80 Model 4p (hw/z80/trs80-4p.txt) 121

Sending binary through the RS-232 port

Once you're finished punching your program in memory, you can
run it with g5000<enter> (not space). If you've saved it to
disk, run "recv" instead. Because it's an infinite loop, your
screen will freeze. You can start sending your data.

To that end, there's the tools/pingpong program. It takes a
device and a filename to send. Before you send the binary, make
it go through tools/ttysafe first (which just takes input from
stdin and spits tty-safe content to stdout):

 ./ttysafe < os.bin > os.ttysafe

On OpenBSD, the invocation can look like:

 doas ./pingpong /dev/ttyU0 os.ttysafe

If everything goes well, the program will send your contents,
verifying every byte echoed back, and then send a null char to
indicate to the receiving end that it's finished sending. This
will end the infinite loop on the TRS-80 side and return. That
should bring you back to a refreshed debug display and you
should see your sent content in memory, at the specified address
($3000 if you didn't change it).

If there was no error during pingpong, the content should be
exact. Nevertheless, I recommend that you manually validate a
few bytes using TRSDOS debugger before carrying on.

debugging tip: Sometimes, the communication channel can be a
bit stubborn and always fail, as if some leftover data was
consistently blocking the channel. It would cause a data
mismatch at the very beginning of the process, all the time.
What I do in these cases is start a "COMM *cl" session on one
side and a screen session on the other, type a few characters,
and try pingpong again.

Bringing it together

Now that you have all you need to send binary contents to your
TRS-80, you're ready to craft your disk! To do so, we'll use
DEBUG's low level disk writing capabilities. It is invoked with
a command has this signature:

driveno,trackno,sector,r/w,addr,sectorcount

Example:

122 7 Hardware: Other z80 based devices

1,0,1,w,3000,1

This writes a single sector at track 0, sector 1 (each sector is
256 bytes) using the contents of memory address $3000.

Drive numbers are 0 and 1.

First, you'll upload and write down boot.bin with this very
command. Yes, the boot sector is sector 1, not sector 0. Weird
but true.

Then, you'll upload os.bin. It's a bit bigger than the
bootloader and spans over multiple tracks, starting with track 1
(the bootloader loads beginning at track 1, sector 0). You might
be tempted to write 18 sectors at once (there are 18 sectors per
track), but TRS-DOS is a bit tricky for this because it seems to
silently drop the write operation sometime. I've found that the
sweet spot is to write 6 sectors at once. So, for a binary that
is $1a00 bytes big, it would be:

1,1,0,w,3000,6
1,1,6,w,3600,6
1,1,c,w,3c00,6
1,2,0,w,4200,6
1,2,6,w,4800,2

If everything went well, you have your boot disk! Before you
reboot, however, you might want to re-read those sectors in
memory (replace "w" with "r") and quickly compare the first
bytes of every sector with your reference binary to make sure
that everything was written properly (you can zero-out a memory
zone with "F". Example: "f3000,5000,0").

You're done! Pop the disk in the first drive, reboot, you should
have a Collapse OS prompt.

All this process was a bit inconvenient, but once you have a
Collapse OS disk, receiving data and writing them to disk is a
bit easier. Read on for details.

Using floopy drives

As it is, your system fully supports reading and writing to
both floppy drives. By default, floppy drive 1 is selected. You
can select the active drive with FD0 and FD1. Then, use regular
BLK works to interact with blocks.

Sending blkfs to floppy

7.2 TRS-80 Model 4p (hw/z80/trs80-4p.txt) 123

Collapse OS has RX<? to read a char from its RS-232 port and TX>
to emit to it. That's all you need to have a full Collapse OS
with access to disk blocks.

First, make sure your floppies are formatted. Collapse OS is
currently hardcoded to single side and double density, which
means there's a limit of 180 blocks per disk.

You'll need to send those blocks through RS-232. First, let's
initialize the driver with CL$. It is hardcoded to "no parity,
8 bit words" and takes a "baud code" as an argument. It's a 0-15
value with these meanings:

00 50 01 75 02 110 03 134.5
04 150 05 300 06 600 07 1200
08 1800 09 2000 0a 2400 0b 3800
0c 4800 0d 7200 0e 9600 0f 19200

After CL$ is called, let's have the CL take over the prompt:

 ' TX> 'EMIT !
 ' RX<? 'KEY? !

"Aliases" in usage.txt Page 13 for details. Your serial link now has
the prompt.

Now, you can use /tools/blkup to send a disk's contents. First,
extract the first 180 blocks from blkfs:

 dd if=blkfs bs=1024 count=180 > d1

Now, insert your formatted disk in drive 1 and push your blocks:

 tools/blkup /dev/ttyUSB0 0 d1

It takes a while, but you will end up having your first 180
blocks on floppy! Go ahead, LIST around. Then, repeat for other
disks.

Once you're done, you will want to go back to local control:

 ' (emit) *TO 'EMIT
 ' (key?) *TO 'KEY?

Alternatively to all this, you can also use Collapse OS' XMODEM
implementation at B150. Instead of taking over the prompt, you'd
run "0 BLK@" followed by "RX>BLK". On the other side, you'd run
your favorite XMODEM app ("rx" probably).

124 7 Hardware: Other z80 based devices

Floppy organisation

Making blkfs span multiple disk is a bit problematic with
regards to absolute block references in the code. You'll need to
work a bit to design your very own Collapse OS floppy set. See
/doc/usage.txt Page 13 for details.

The TRS-80 4P implementation of Collapse OS includes a very
handy floppy management system through "disk words" with
hardcoded offsets:

D1 - 0
D2 - 200
D3 - 300
D4 - 400
D5 - 500
ND - no disk

(yes, I skip blocks 180-199 entirely in my default media
organisation for the 4P)

These words indicate to COS which floppy is inserted and apply
the proper offset to its block requests. At boot, both drives
ar at "no disk" any dist request will fail with an "out of
range" error. If you execute "D2", doing "242 LIST" will read
block 42. doing "42 LIST" will generate an error.

Here's the nice part: COS will auto-select the correct drive for
the block you request. If, for example, you run "FD0 D1 FD1 D3"
and then run "ARCHM Z80A", COS will automatically read block 1
on FD1 (for 301 of ARCHM) and then read block 2 on FD0 (for 002
of ASML in Z80A) and then 20-27 on FD1 and then block 3 on FD0
(for ASMH in Z80A).

Self-hosting

As it is, your installment of Collapse OS is self-hosting using
instructions from /doc/selfhost.txt Page 65 . The difference is that
instead of writing the binary you have in memory to EEPROM,
you'll want to write it to disk. To that end, there is the
MEM>BLK utility in B121 which allows writing memory spanning
multiple sectors to disk.

To write Collapse OS to the boot disk, you have to write your
binary to the *half* of the 4th block (18 sectors per track is
4.5K per track, track 1 is there). MEM>BLK doesn't allow writing
half blocks, but you can cheat a little bit with something like:

ORG $200 - 4 8 MEM>BLK

7.2 TRS-80 Model 4p (hw/z80/trs80-4p.txt) 125

See what I did there? I simply fill the first 2 sectors of block
4 with whatever preceeds my binary.

If you need to write the boot sector from within Collapse OS,
don't run MEM>BLK because the computer's bootloader is a bit
sensible to garbage. What you do is zero-out the whole block 0
like this:

0 BLK@ BLK($400 0 FILL BLK!!

Then, you can place the bootloader's content at BLK(+$100 and
then call FLUSH to write it out.

7.3 Z80-MBC2 (hw/z80/z80mbc2.txt)
The Z80-MBC2[1] combines a Z80 and an ATMEGA32A to provide a
CP/m capable computing environment. It features a SD card
bootloader which makes running Collapse OS on it rather simple.

In this recipe, we're going to run Collapse OS on the Z80-MBC2,
interfacing through its serial port. We're going to use the
MBC's API to implement BLK on the SD card.

Gathering parts

* A Z80-MBC2 computer with its SD card module and a properly
 flashed "IOS" on the ATMega32A.
* A FTDI-to-TTL cable to connect to the serial port.

Building the binary

Running "make" in arch/z80/z80mbc2 will yield "os.bin" which is
what we want.

Running on the Z80-MBC2

Mount the SD card on your modern computer and copy "os.bin" as
"autoboot.bin", overwriting the binary that was previously
there.

We also have to copy the blkfs over. This is done by using IOS'
drive system. Each "DSxNyy.DSK" file on the card is a drive,
each drive has 512 track of 32 sectors of 512 bytes, so one
drive is plenty for our needs. Collapse OS hardcodes drive 0.

Each drive is part of a set. IOS theoretically supports up to 10
sets, but the binary shipped by default only accepts 4. You have

126 7 Hardware: Other z80 based devices

to overwrite an existing set. I used set 3. So, copy "blkfs" to
file "DS3N00.DSK". If you want, you can change the name of the
set by changing the contents of "DS3NAM.DAT".

Put back the SD card in the Z80-MBC2 and power it up by
connecting the FTDI adapter to it (red: VCC, black: GND, green:
TX, white: RX).

The FTDI adapter will show up as something like "ttyUSB0" (or
"ttyU0" on OpenBSD). Connect to it with "screen" or "cu" or
whatever you like. Baud rate of the Z80-MBC2 appears to be
hardcoded to 115200.

Then, enable IOS program selection by holding RESET and USER at
the same time, wait 2 seconds, releasing RESET, wait 2 seconds,
releasing USER. You should then be given a 1-8 choice.

You begin by selecting the proper disk set, which is through
choice 8, then you select the Autoboot binary through choice 4.

You are now in Collapse OS.

[1]: https://hackaday.io/project/159973-z80-mbc2-a-4-ics-homebrew-
z80-computer

7.4 RC2014 (hw/z80/rc2014/intro.txt)
The RC2014[1] is a nice and minimal z80 system that has the
advantage of being available in an assembly kit. Assembling it
yourself involves quite a bit of soldering due to the bus
system. However, one very nice upside of that bus system is that
each component is isolated and simple.

The machine used in this recipe is the "Classic" RC2014 with an
8k ROM module , 32k of RAM, a 7.3728Mhz clock and a serial I/O.

The ROM module being supplied in the assembly kit is an EPROM,
not EEPROM, so you can't install Collapse OS on it. You'll have
to supply your own.

There are many options around to boot arbitrary sources. What
was used in this recipe was a AT28C64B EEPROM module. I chose it
because it's compatible with the 8k ROM module which is very
convenient. If you do the same, however, don't forget to set the
A14 jumper to high because what is the A14 pin on the AT27 ROM
module is the WE pin on the AT28! Setting the jumper high will
keep is disabled.

The goal is to have the shell running and accessible through the
Serial I/O.

7.4 RC2014 (hw/z80/rc2014/intro.txt) 127

You'll need specialized tools to write data to the AT28 EEPROM.
There seems to be many devices around made to write in flash and
EEPROM modules. If you don't have any but have a Arduino Uno,
take a look at doc/hw/arduinouno.

Gathering parts

* A "classic" RC2014 with Serial I/O
* An AT28C64B and a way to write to it.
* A FTDI-to-TTL cable to connect to the Serial I/O module

Build the binary

Building the binary is as simple as running "make" in
/arch/z80/rc2014. This will yield "os.bin" which can then be
written to EEPROM.

This build is controlled by the xcomp.fs unit, which loads
blk/618. That's what you need to modify if you want to customize
your build.

Emulate

The Collapse OS project includes a RC2014 emulator suitable for
this image. You can invoke it with "make emul".

Running

Put the AT28 in the ROM module, don't forget to set the A14
jumper high, then power the thing up. Connect a FTDI-to-TTL
cable to the Serial I/O module and identify the tty bound to it
(in my case, "/dev/ttyUSB0"). Then:

 screen /dev/ttyUSB0 115200

Press the reset button on the RC2014 and the "ok" prompt should
appear.

[1]: https://rc2014.co.uk

7.5 Asynchronous Communications Interface Adapters
(hw/z80/rc2014/acia.txt)
The RC2014's Serial I/O module and the Dual Serial module
(using Zilog's SIO) both have an important shortcoming: they
hard-wire CTS to ground. Considering that these modules' main
purpose are to communicate with a modern machine through a USB-

128 7 Hardware: Other z80 based devices

to-TTL dongle, this hard-wiring make sense: a modern machine
have plenty of power to take whatever is coming on a 115200
bauds channel.

However, this becomes problematic when communicating with the
RC2014 through an underpowered machine running Collapse OS:
RTS/CTS flow control doesn't work.

For this reason, I recommend that you build your own ACIA
module. A schematic for it is in img/acia.jpg Page 128 . This module is
exactly the same as the "official" Serial I/O module, with two
differences:

1. Wire CTS properly
2. Add a '393 counter to allow for lower baud rates.

This design with the '393 has an important limitation: you can't
easily fine-select your baud rate. For example, dividing by 12
(for 9600 bauds) is not straightforward with a '393. However,
because the '393 is a dual 4-bit counter, it can divide more.

You might want to replace the '393 with a '161 with preset if
you want to divide by a more specific number.

7.6 RC2014 ACIA (hw/z80/rc2014/img/acia.jpg)

7.7 TI-84+ (hw/z80/ti84/intro.txt)
The TI-84+ is a machine with many advantages, one being that
it's very popular. It also has a lot of flash memory and RAM.

7.7 TI-84+ (hw/z80/ti84/intro.txt) 129

Its builtin keyboard and screen, however, are hard to use,
especially the screen. With a tiny font, the best we can get is
a 24x10 console.

There is, however, a built-in USB controller that might prove
very handy.

I haven't opened one up yet, but apparently, they have limited
scavenging value because its z80 CPU is packaged in a
TI-specific chip. Due to its sturdy design, and its ample RAM
and flash, we could imagine it becoming a valuable piece of
equipment if found intact.

The best pre-collapse ressource about it is WikiTI[1].

As it is now, with its tiny screen and cumbersome keyboard,
Collapse OS is not really usable on the TI-84+. One could
imagine a scenario where one has a terminal and uses the TI-84+
through the link for its large amount of flash and RAM. But
using it standalone? Nah, not even post-collapse.

Therefore, this recipe is more of a "look, I run!" demo.

Gathering parts

* A TI-84+
* A USB cable
* tilp[2]
* mktiupgrade[3]

Build the ROM

Running "make" in /arc/z80/ti84 will result in "os.rom" being
created.

Emulate

Collapse OS has a builtin TI-84+ emulator using XCB for display
in emul/hw/ti. You can invoke it with "make emul".

You will start with a blank screen, it's normal, you haven't
pressed the "ON" key yet. This key is mapped to tilde (~) in the
emulator. Once you press it, the Collapse OS prompt will appear.
See emul/hw/ti/README.md for details.

130 7 Hardware: Other z80 based devices

Upload to the calculator

Background notes

Getting software to run on it is a bit tricky because it needs
to be signed with TI-issued private keys. Those keys have long
been found and are included in keys/. With the help of the
mktiupgrade, an upgrade file can be prepared and then sent
through the USB port with the help of tilp.

That, however, requires a modern computing environment. As of
now, there is no way of installing Collapse OS on a TI-8X+
calculator from another Collapse OS system.

Because it is not on the roadmap to implement complex
cryptography in Collapse OS, the plan is to build a series of
pre-signed bootloader images. The bootloader would then receive
data through either the Link jack or the USB port and write that
to flash (I haven't verified that yet, but I hope that data
written to flash this way isn't verified cryptographically by
the calculator).

As modern computing fades away, those pre-signed binaries would
become opaque, but at least, would allow bootstrapping from
post-modern computers.

Instructions

WARNING: the instructions below will wipe all the contents of
your calculator, including TI-OS.

To send your ROM to the calculator, you'll need two more tools:
mktiupgrade and tilp.

Once you have them, you need to place your calculator in
"bootloader mode", that is, in a mode where it's ready to
receive a new binary from its USB cable. To do that you need
to:

1. Shut down the calculator by removing one of the battery.
2. Hold the DEL key
3. But the battery back.
4. A "Waiting... Please install operating system now" message\
 will appear.

Once this is done, you can plug the USB cable in your computer
and run "make send". This will create an "upgrade file" with
mktiupgrade and then push that upgrade file with tilp. tilp will

7.7 TI-84+ (hw/z80/ti84/intro.txt) 131

prompt you at some point. Press "1" to continue.

When this is done, you can press the ON button to see Collapse
OS' prompt!

Validation errors

Sometimes, when uploading an upgrade file to your calculator,
you'll get a validation error. You can always try again, but in
my own experience, some specific binaries will simply always be
refused by the calculator. Adding random "nop" or reordering
lines (when it makes sense, of course) should fix the problem.

I'm not sure whether it's a bug with the calculator or with
mktiupgrade.

Usage

The shell works like a normal BASIC shell, but with very tight
screen space.

When pressing a "normal" key, it spits the symbol associated to
it depending on the current mode. In normal mode, it spits the
digit/symbol. In Alpha mode, it spits the letter. In Alpha+2nd,
it spits the uppercase letter.

Special keys are Alpha and 2nd. Pressing them toggles the
associated mode. Alpha and 2nd mode don't persist for more than
one character. After the character is spit, mode reset to
normal.

Pressing 2nd then Alpha will toggle the A-Lock mode, which is a
persistent mode. The A-Lock mode makes Alpha enabled all the
time. While A-Lock mode is enabled, you have to enable Alpha to
spit a digit/symbol.

Simultaneous keypresses have undefined behavior. One of the keys
will be registered as pressed. Mode key don't work by
simultaneously pressing them with a "normal" key. The presses
must be sequential.

Keys that aren't a digit, a letter, a symbol that is part of
7-bit ASCII or one of the two mode key have no effect.

[1]: http://wikiti.brandonw.net/index.php
[2]: http://lpg.ticalc.org/prj_tilp/
[3]: https://github.com/KnightOS/mktiupgrade

132 7 Hardware: Other z80 based devices

7.8 TI-84+ LCD driver (hw/z80/ti84/lcd.txt)
Implement (emit) on TI-84+ (for now)'s LCD screen. Lives at
B350.

Required config:

* LCD_MEM: 2b area where a that will point to an area allocated
 to LCD driver memory during LCD$ init.

The screen is 96x64 pixels. The 64 rows are addressed directly
with CMD_ROW but columns are addressed in chunks of 6 or 8 bits
(there are two modes).

In 6-bit mode, there are 16 visible columns. In 8-bit mode,
there are 12.

Note that "X-increment" and "Y-increment" work in the opposite
way than what most people expect. Y moves left and right, X
moves up and down.

Z-Offset

This LCD has a "Z-Offset" parameter, allowing to offset rows on
the screen however we wish. This is handy because it allows us
to scroll more efficiently. Instead of having to copy the LCD
ram around at each linefeed (or instead of having to maintain
an in-memory buffer), we can use this feature.

The Z-Offset goes upwards, with wrapping. For example, if we
have an 8 pixels high line at row 0 and if our offset is 8,
that line will go up 8 pixels, wrapping itself to the bottom of
the screen.

The principle is this: The active line is always the bottom
one. Therefore, when active row is 0, Z is FNTH+1, when row is
1, Z is (FNTH+1)*2, When row is 8, Z is 0.

6/8 bit columns and smaller fonts

If your glyphs, including padding, are 6 or 8 pixels wide,
you're in luck because pushing them to the LCD can be done in a
very efficient manner. Unfortunately, this makes the LCD
unsuitable for a Collapse OS shell: 6 pixels per glyph gives us
only 16 characters per line, which is hardly usable.

This is why we have this buffering system. How it works is that
we're always in 8-bit mode and we hold the whole area (8 pixels
wide by FNTH high) in memory. When we want to put a glyph to

7.8 TI-84+ LCD driver (hw/z80/ti84/lcd.txt) 133

screen, we first read the contents of that area, then add our
new glyph, offsetted and masked, to that buffer, then push the
buffer back to the LCD. If the glyph is split, move to the next
area and finish the job.

That being said, it's important to define clearly what CURX and
CURY variable mean. Those variable keep track of the current
position *in pixels*, in both axes.

Words descriptions

LCD_BUF: two pixel buffers that are 8 pixels wide (1b) by FNTH
pixels high. This is where we compose our resulting pixels
blocks when spitting a glyph.

8 Hardware: 6502 based devices

8.1 Apple IIe (hw/6502/appleiie/intro.txt)
The Apple IIe is a computer with many nice features, very good
expandability and a rather straightforward design, along with a
very complete documentation.

As it is now, Collapse OS is built upon ProDOS and doesn't
directly run the hardware. Maybe some day direct drivers will be
written, but the challenge is significant because the floppy
controller on the Apple IIe, unlike in many other machines, is
very bare. Sector/track detection has to be done entirely in
software with precise timing. Maybe one day...

Reference documents

* Apple IIe Reference Manual
* Applesoft BASIC Programming Reference Manual
* Apple II BASIC Programming with ProDOS
* Beneath Apple DOS
* Beneath Apple ProDOS

Installing Collapse OS

I didn't have the luck of having a RS-232 card on the machine I
acquired. I could have gone through some hacks (maybe the
joystick port?) which would have required the design of some
hardware adapter. Another possible route would be to craft a
floppy from another machine which could be read from the Apple
IIe, but floppy-related tools in Collapse OS are not mature
enough yet.

134 8 Hardware: 6502 based devices

Since I haven't done so yet in any of the recipes, let's go with
the long, hard route: typing the whole thing in.

For this recipe, you need:

* An Apple IIe
* A floppy disk drive and some floppies
* A ProDOS disk (mine is ProDOS 8)

The Monitor

We'll be typing in our stuff from Apple's Monitor program which
is documented in "Apple IIe Reference Manual". A cheatsheet is
available in monitor.txt Page 135 .

Things can go wrong and you can lose your work. You are advised
to quickly become accustomed to ProDOS BASIC's BSAVE and BLOAD
commands to incrementally save your work to floppies.

Typing it in

When you run "make" in /arch/6502/appleiie, in addition to
producing os.bin, it also spits the binary contents to the
screen in lines of 16 bytes and, at the end of each line, a
numerical checksum.

The idea is that with the help of these checksums, if you made a
typing error, you'll quickly locate it. The checksum is a simple
sum rather than a CRC16 because Applesoft BASIC doesn't support
fancy stuff like XOR.

After having typed a few lines (and saved them!), you can type
yourself a checksum checker in BASIC:

10 A=8192
20 N=0
30 FOR I=A TO A+15
40 N=N+PEEK(A)
50 NEXT I
60 PRINT N
70 INPUT X
80 A=A+16
90 GOTO 20

The result of "INPUT X" is ignored, but the pause give you the
opportunity to break the loop with Control+C.

You're ready for the real thing. The idea is to type it at its
home address, $2000. You'll do so in the Monitor (CALL -151).

8.1 Apple IIe (hw/6502/appleiie/intro.txt) 135

Regularly, you'll want to come back to BASIC and save your work
with something like "BSAVE COS,A$2000,L$XXXX" with XXXX
being the length of the binary you've typed so far. Then, you
run "RUN" to do your checksum. Compare numbers you get from
BASIC with numbers you got from xcomp.fs. They're supposed to
match. The last line doesn't have a checksum, just be extra
careful with it.

Once you're ready, you can run the binary with "2000G" in the
Monitor.

Alternative to typing: SPI hack through game port

See spihack.txt Page 136

Creating a ProDOS boot disk

With ProDOS, it's easy to create a disk that will directly boot
to Collapse OS. To do so, begin with a bootable copy of your
ProDOS disk and remove everything from it except the "PRODOS"
file.

Then, copy your COS "BIN" file in there and make it into a SYS
file. That last part is a bit awkward. Given a BIN file named
COS, here's the BASIC commands to copy it to a SYS file:

] CREATE COS.SYSTEM,TSYS
] BLOAD COS,A$2000,L$2000
] BSAVE COS.SYSTEM,A$2000,L$2000,TSYS

If COS.SYSTEM is the only SYS file besides PRODOS, then it the
disk will boot directly to Collapse OS.

8.2 Apple II's system monitor
(hw/6502/appleiie/monitor.txt)
The monitor allows peeking and poking memory in a manner that is
much more convenient than with BASIC, in hexadecimal notation.

A complete reference is in "Apple IIe Reference Manual". This is
a quick reference.

When inside BASIC, we enter the monitor with "CALL -151". We
then get a "*" prompt.

Typing an address reads that byte:

*1DFC

136 8 Hardware: 6502 based devices

1DFC- 2A
*

We can fetch a range:

*1DFC.1E00
1DFC- 2A 2B 2C 2D
1E00- 2E
*

We can set memory:

*1DFC:01 02 03
*1DFC.1E00
1DFC- 01 02 03 2D
1E00- 2E
*

We can "continue" setting memory, omitting address:

*1DFC:04 05 06
*:07 08
*1DFC.1E00
1DFC- 04 05 06 07
1E00- 08
*

You can disassemble memory with "L" (for LIST):

*1DFCL
(20 lines of disassembled memory)

8.3 Alternative to typing: SPI through game port
(hw/6502/appleiie/spihack.txt)
Instead of typing, if you have a way to spit SPI slow enough
(for example, with doc/hw/avr/spispit), you can record that data
through the game port.

It's hacking because the game port only has inputs, but if you
perform checksums on both sides, you can end up with good data.

The game port is a DB9 that has the following pinout:

5 4 3 2 1
 9 8 7 6

1 - SW1
2 - +5V
3 - GND
4 - PDL2

8.3 Alternative to typing: SPI through game port (hw/6502/appleiie/spihack.txt) 137

5 - PDL0
6 - SW2
7 - SW0
8 - PDL1
9 - PDL3

In my own setup, I used an Arduino because I could power it
directly from the port, which simplifies interfacing (I can wire
directly).

We use only SW0, plugged to SCK and SW1, plugged to MOSI.

SW* are mapped to memory thus:

SW0 - C061
SW1 - C062
SW2 - C063

Only bit 7 is relevant (1=high), the rest is garbage.

The idea is that we point to an address in memory, and then
run an infinite loop that shifts data in A 8 times, then writes
to memory.

The code for doing this is:

\ Receive SPI data through game port
\ Plug SCK in SW0 and MOSI in SW1, then run the program
\ ZP+7 must contain the destination's page.
0 # LDY, 6 <> STY, BEGIN,
 1 # LDA, BEGIN, \ 8 times
 BEGIN, $c061 () LDX, (SW0) BR BPL, \ SW0 high!
 CLC, $c062 () LDX, (SW1) FJR BPL, SEC, THEN, ROLA,
 BEGIN, $c061 () LDX, (SW0) BR BMI, \ SW0 low!
 BR BCC,
 6 []Y+ STA, INY, IFZ, 7 <> INC, THEN, BR BCS,

You might not have Collapse OS on the IIe yet, so you'll have
to type this with the integrated mini assembler. It's position
independant, so you can put it anywhere.

The idea is that before you launch the code, you set the dest-
ination page in ZP+1 (ZP+0 stays at 0 at all times). Then, you
call the code and then spit your SPI. Once it's spit, press
CTRL+RESET to come back to AppleSoft prompt. If everything went
well, you have your data in memory, do stuff with it.

Note that reading the port with the 6502 at 1MHz represents an
important constraint: your SPI spitter has to be pretty slow! At
about 30 cycles for the main loop, you can expect to miss data
if you spit faster than 30KHz.

138 8 Hardware: 6502 based devices

Be careful, SW0 is hard-wired to "Open-Apple" key and SW1, to
"Solid-Apple". This can have weird effects on warm boot-up, so
you might want to disconnect your SPI spitter before you reset.

If you use the Arduino SPI spitter from doc/hw/avr/spispit, you
need to ignore the first 3 SCK toggles. You can do that by pre-
pending the above code with:

$20 # LDA, BEGIN, \ 3 times
 BEGIN, $c061 () LDX, (SW0) BR BPL, \ SW0 high!
 BEGIN, $c061 () LDX, (SW0) BR BMI, \ SW0 low!
 ROLA, BR BCC,

Reboot afterwards

After you got your data in, that you've checked that it's
correct and that you've saved it to disk, I recommend that you
reboot before launching your binary.

In my tests, the computer exhibited buggy behavior right after
a run of the procedure above, which only a clean reboot could
fix.

9 Hardware: Various other devices

9.1 PC/AT (hw/8086/pcat.txt)
PC-compatible machines need no introduction. They are one of the
most popular machines of all time. Collapse OS has a 8086
assembler and has boot code allowing it to run on a
PC/AT-compatible machine, using BIOS interrupts in real mode.
Collapse OS always runs in real mode.

In this recipe, we will compile Collapse OS and write it to a
USB drive that is bootable on a modern PC-compatible machine.

Gathering parts

* A modern PC-compatible machine that can boot from a USB drive.
* A USB drive

Build the binary

Running "make" in /arch/8086/pcat will yield:

* mbr.bin: a 512 byte binary that goes at the beginning of the
 disk

9.1 PC/AT (hw/8086/pcat.txt) 139

* os.bin: 8086 Collapse OS binary
* disk.bin: a concatenation of the above, with "blkfs" appended
 to it starting at $2000.

disk.bin is what goes on the USB drive.

This binary has BLK and AT-XY support, which means you have disk
I/Os and can run VE.

Emulation

You can run the built binary in Collapse OS' 8086 emulator using
"make emul".

The 8086 emulator is barbone. If you prefer to use it on a more
realistic setting, use QEMU. The command is:

 qemu-system-i386 -drive file=disk.bin,if=floppy,format=raw

Running on a modern PC

First, copy disk.bin onto your USB drive. For example, on an
OpenBSD machine, it could look like:

 doas dd if=disk.bin of=/dev/sd1c

Your USB drive is now BIOS-bootable. Boot your computer and
enter your BIOS setup to make sure that "legacy boot" (non-EFI
boot, that is, BIOS boot) is enabled. Configure your boot device
priority to ensure that the USB drive has a chance to boot.

Reboot, you have Collapse OS. Boot is of course instantaneous
(we're not used to this with modern software...).

9.2 TRS-80 Color Computer 2 (hw/6809/coco2.txt)
The CoCo2 is a nice little 6809 machine featuring 32x16 characters
video output,
a builtin keyboard, a ROM slot, RS-232, I/O ports, more than
enough to have fun
with Collapse OS on it.

The most straightforward way to run Collapse OS on it is to build
a custom ROM
cart. At first, you would think that you could cannibalize a ROM
cart you have
laying around, but the ones I had had some kind of unmovable round
plastic chip
on the PCB, so nowhere to place a AT28 on. I built my own from

140 9 Hardware: Various other devices

scratch.

Relevant Documents

* M6809 datasheet
* Service Manual - TRS-80 Color Computer 2 NTSC Version
* Color Computer ROM Cartridge Schematic

Gathering parts

* A Coco2. Mine is the 64K RAM version.
* A 40 pin male card edge connector. If you can get a version that
has its pins
 pre-bent over 2 rows, you'll save yourself some work.
* A protoboard that is large enough to accomodate 20 pins, narrow
enough to fit
 in the ROM card slot, long enough so that you can still
comfortably hold it
 while fitting it in the slot.
* A AT28C64B EEPROM
* A socket for it.
* A disposable CoCo2 ROM cart helps when trying to visualize pin
placement.

Building the cart

Then, it's only a matter of wiring the proper connector pin to the
proper AT28
pin. The CoCo2 ROM cart pinout is this:

7: Q
8: CART/
9: 5V
10: D0
11: D1
12: D2
13: D3
14: D4
15: D5
16: D6
17: D7
18: no connect
19: A0
20: A1
21: A2
22: A3
23: A4

9.2 TRS-80 Color Computer 2 (hw/6809/coco2.txt) 141

24: A5
25: A6
26: A7
27: A8
28: A9
29: A10
30: A11
31: A12
32: CTS/
33: GND
34: GND

When you hold the cart with the edge facing you, pin 1 is on the
top pane, at
your left. Pin 40 is on the bottom pane, at your right. Pins 1-6,
18 and 35-40
are all no connects.

Q and CART/ are wired together and don't touch the AT28. Data and
address lines
are connected to the same AT28 pin. CTS/ is wired to AT28's CE/.

On the AT28, you will want to hard-wire WE/ to 5V and OE/ to GND.
If you want
your cart to accomodate bigger EEPROMs, you'll want to hard-wire
A13 and A14.

Running Collapse OS

Once you have your cart, run "make" in arch/6809/coco2 and write
os.bin onto
your AT28. Then stuff it on your cart, plug it in, and poof!
Collapse OS.

ALL CAPS

The CoCo2 has 64 character glyphs builtin and Collapse OS piggy-
backs on them.
In those 64 glyphs, there are no lowercase letters. However, every
letter can
be displayed with a dark background. This is what we use to
indicate a lower-
case letter.

Keyboard input is by default uppercased. Hold shift to type a
lowercase.

142 9 Hardware: Various other devices

9.3 Writing to a AT28 EEPROM from a modern environment
(hw/avr/at28.txt)
The Arduino Uno is a very popular platform based on the
ATMega328p. While Collapse OS doesn't run on AVR MCUs (yet?),
the Arduino can be a handy tool, which is why we have recipes
for it here.

In this recipe, we'll build ourselves an ad-hoc EEPROM holder
which is designed to be driven from an Arduino Uno.

Gathering parts

* An Arduino Uno
* A AT28C64B
* 2 '164 shift registers
* Sockets, header pins, proto board, etc.
* AVRA[1] (will some day rewrite to Collapse OS' ASM)
* avrdude to send program to Arduino

Schema

Schema is at img/at28wr.jpg Page 143 .

This is a rather simple circuit which uses 2 chained '164 shift
register to drive the AT28 address pins and connects CE, WE, OE
and the data pins directly to the Arduino. Pins have been chosen
so that the protoboard can plug directly on the Arduino's right
side (except for VCC, which needs to be wired).

PD0 and PD1 are not used because they're used for the UART.

AT28 selection pins are pulled up to avoid accidental writes due
to their line floating before Arduino's initialization.

I've put 1uf decoupling caps next to each IC.

Software

The software in code/at28wr.asm listens to the UART and writes
every byte it receives to the AT28, starting at address 0. It
expects tty-escaped content (see /tools/ttysafe).

After having written the byte, it re-reads it from the EEPROM
and spits it back to the UART, tty-escaped.

9.3 Writing to a AT28 EEPROM from a modern environment (hw/avr/at28.txt) 143

Usage

After you've build and sent your binary to the Arduino with
"make send", you can send your (tty-safe!) content to your
EEPROM using /tools/pingpong.

[1]: http://avra.sourceforge.net/

9.4 AT28 R/W (hw/avr/img/at28wr.jpg)

9.5 Spit bytes through SPI from an Arduino Uno
(hw/avr/spispit.txt)
This recipe programs an Arduino Uno to spit data from its Flash
memory through its SPI pins. This allows you to get data into
systems with as little as 2 input pins available.

The Arduino acts as an SPI master and assumes the presence of
an activated slave.

144 9 Hardware: Various other devices

The use case for which this project was created (Apple IIe
reading SPI through its game port) needed SPI to be quite slow
because it couldn't keep up otherwise.

This is why we apply a general 16x clock divider through CLKPR
and set the SPI speed to f_osc/128. This gives us a rate of
about 8KHz, which is plenty slow for just about anything.

It transmits data in chunks of $100 bytes, beginning at address
$100. The number of chunks it transmit is read from address $ff.

The program begins transmitting on startup. To control the
moment of transmission, you use the Reset button.

While transmitting, it reads the result of the SPI exchange in
its SPI data register and spits it to UART. This way, if your
destination echoes anything and your arduino's UART is plugged
to something, you can control that echo.

Of course, due to the nature of SPI, your first byte will be
garbage and you won't get the last byte.

Gathering parts

* An Arduino Uno
* avrdude to send program to Arduino

Programming the Arduino

The program lives in arch/avr/blk.fs and is built using Collapse
OS' AVR assembler. A Makefile exists in arch/avr/spispit that
takes care of doing this automatically. "make" will yield
"spispit.bin"

Data to spit has to be placed in a file named "data" and
"make send" will combine spispit.bin and data and place the
proper number of blocks at address $ff. It will then send that
to the Arduino using avrdude.

At this point, it's ready to use.

Ignore the first 3 SCK toggles

On an Arduino Uno that has its bootloader enabled, SCK is going
to toggle 3 times before it begins spitting its payload. The
logic reading this payload has to ignore those first 3 toggles.

9.5 Spit bytes through SPI from an Arduino Uno (hw/avr/spispit.txt) 145

Check the LED

Because SCK is wired to the builtin LED on the Arduino Uno, you
can check whether we're still transmitting by looking at the
LED. At 8KHz, its blinking is visible to the naked eye.

146 Block filesystem

Block filesystem

1 Architecture independent

1.1 Master Index: 0

B0
MASTER INDEX

001 Useful little words 010 RX/TX tools
020 Block editor 035 Memory Editor
040 AVR SPI programmer 045 Sega ROM signer
050-199 unused
200 Cross compilation 206 Flow words
210 Core words 230 BLK subsystem
235 RX/TX subsystem 240 Grid subsystem
245 PS/2 keyboard subsystem 250 SD Card subsystem
260 Fonts 290 Automated tests
300 Arch-specific content

1.2 Useful little words: 1-5

B1
\ Useful little words. MIN MAX MOVE-
\ parse the next n words and write them as chars
: MIN (n n - n) 2DUP > IF SWAP THEN DROP ;
: MAX (n n - n) 2DUP < IF SWAP THEN DROP ;
\ Compute CRC16 over a memory range
: CRC16[] (a u -- c) >R >A 0 BEGIN AC@+ CRC16 NEXT ;
: MOVE- (a1 a2 u --) \ *A* MOVE starting from the end
 ?DUP IF >R OVER - (a1 diff) SWAP R@ + >A
 BEGIN (diff) A- A> OVER + AC@ SWAP C! NEXT DROP
 ELSE 2DROP THEN ;

1.2 Useful little words: 1-5 147

B2
\ Useful little words. MEM>BLK BLK>MEM
\ *A* Copy an area of memory into blocks.
: MEM>BLK (addr blkno blkcnt)
 >R BEGIN (a blk)
 DUP BLK@ 1+ SWAP DUP BLK($400 MOVE BLK!! $400 + SWAP NEXT
 DROP FLUSH ;
\ *A* Copy subsequent blocks in an area of memory
: BLK>MEM (blkno blkcnt addr)
 ROT> >R BEGIN (a blk)
 DUP BLK@ 1+ SWAP BLK(OVER $400 MOVE $400 + SWAP NEXT
 DROP ;

B3
\ Context. Allows multiple concurrent dictionaries.
\ See doc/usage.txt

0 VALUE saveto \ where to save CURRENT in next switch
: context DOER CURRENT , DOES> (a --)
 saveto IF CURRENT [TO] saveto THEN (a)
 DUP [TO] saveto (a)
 @ CURRENT ! ;

B4
\ Grid applications helper words. nspcs clrscr
: nspcs (pos n) >R BEGIN SPC OVER CELL! 1+ NEXT DROP ;
: clrscr 0 COLS LINES * nspcs ;

148 1 Architecture independent

B5
\ Word table. See doc/wordtbl
: WORDTBL (n -- a) CREATE HERE SWAP << ALLOT0 1 HERE C! ;
: W+ (a -- a+2?) 1+ 1+ DUP @ IF DROP THEN ;
: :W (a -- a+2?) HERE XTCOMP OVER ! W+ ;
: 'W (a -- a+2?) ' OVER ! W+ ;
: WEXEC (tbl idx --) << + @ EXECUTE ;

1.3 Pager: 6

B6
\ Pager. See doc/pager
4 VALUES ''EMIT ''KEY? chrcnt lncnt
20 VALUE PGSZ
: realKEY BEGIN ''KEY? EXECUTE UNTIL ;
: back ''EMIT 'EMIT ! ''KEY? 'KEY? ! ;
: emit (c --)
 chrcnt 1+ [TO] chrcnt
 DUP CR = chrcnt LNSZ = OR IF
 0 [TO] chrcnt lncnt 1+ [TO] lncnt THEN
 ''EMIT EXECUTE lncnt PGSZ = IF
 0 [TO] lncnt NL> ." Press q to quit, any key otherwise" NL>
 realKEY 'q' = IF back QUIT THEN THEN ;
: key? back KEY? ;
: page 'EMIT @ [TO] ''EMIT 'KEY? @ [TO] ''KEY?
 ['] emit 'EMIT ! ['] key? 'KEY? ! ;

1.4 Flow words: 7

B7
\ Flow words
\ NOTE: can be sourced from both XCOMP and non-XCOMP contexts.
ALIAS PC BEGIN,
: LSET PC TO ;
: BR PC - 2 - _bchk ;
: FJR BEGIN, 1+ 0 ;
: IFZ, FJR JRNZi, ; : IFNZ, FJR JRZi, ;
: IFC, FJR JRNCi, ; : IFNC, FJR JRCi, ;
\ warning: l is a PC value, not a mem addr! this is why we
\ don't write directly to it and instead use HERE-offset.
: FMARK (l --) PC -^ (offset)
 DUP 1- SWAP HERE -^ C! ;
: THEN, FMARK ; : ELSE, FJR JRi, SWAP FMARK ;

1.5 RX/TX tools: 10-15 149

1.5 RX/TX tools: 10-15

B10
\ Communicate blocks with block server. See doc/blksrv.
CREATE h16 '$' C, 4 ALLOT
: RX>h16 (-- n) \ *A*
 h16 1+ >A 4 >R BEGIN RX< DUP EMIT SPC> AC!+ NEXT
 h16 5 PARSE NOT IF 0 THEN ;
: csumchk (c1 c2) = NOT IF ABORT" bad csum" THEN ;
: blksrv< (blkno --) \ *A*
 RX<< TX['G' EMIT .X]TX 0 (csum) BLK(>A 1024 >R BEGIN
 RX< DUP AC!+ + NEXT RX>h16 csumchk ;
: blksrv> (blkno --) \ *A*
 RX<< TX['P' EMIT .X]TX 0 (csum) BLK(>A 1024 >R BEGIN
 AC@+ DUP TX> + NEXT TX[.X]TX ;

B11
\ Remote shell. See doc/rxtx
: RX<?? RX<? ?DUP NOT IF 100 TICKS RX<? THEN ;
: _<< \ print everything available from RX<?
 BEGIN RX<?? IF EMIT ELSE EXIT THEN AGAIN ;
: _<<1r RX< EMIT _<< ;
: rsh BEGIN
 KEY? IF DUP EOT = IF DROP EXIT ELSE TX> THEN THEN _<< AGAIN ;

B12
\ rupload. See doc/rxtx
: CR> CR EMIT ;
: unpack DUP $f0 OR SWAP $0f OR ;
: out unpack TX> TX> ; : out2 L|M out out ;
: rdok \ read RX until after "ok"
 BEGIN RX< WS? NOT UNTIL _<<1r ;
: rupload (loca rema u --)
 TX[." : in KEY $f0 AND KEY $0f AND OR ;" CR> rdok
 ." : in2 in <<8 in OR ;" CR> rdok
 \ sig: chk -- chk, a and then u are KEYed in
 ." : _ in2 >A in2 >R BEGIN in TUCK + SWAP AC!+ NEXT ;"
 CR> rdok DUP ROT (loca u u rema)
 ." 0 _" CR> out2 out2]TX
 >R >A 0 BEGIN (chk) '.' EMIT AC@ out AC@+ + NEXT
 _<<1r TX[." .X FORGET in" CR>]TX rdok .X ;

150 1 Architecture independent

B13
\ XMODEM routines. See doc/rxtx
: _<<s BEGIN RX<? IF DROP ELSE EXIT THEN AGAIN ;
: _rx>mem1 (addr -- f, Receive single packet, f=eot)
 RX< 1 = NOT IF (EOT) $6 (ACK) TX> 1 EXIT THEN
 '.' EMIT RX< RX< 2DROP (packet num)
 >A 0 (crc) 128 >R BEGIN (crc)
 RX< DUP (crc n n) AC!+ (crc n) CRC16 NEXT
 RX< <<8 RX< OR (sender's CRC)
 = IF $6 (ACK) ELSE $15 'N' EMIT (NACK) THEN TX> 0 ;
: RX>MEM (addr --, Receive packets into addr until EOT)
 _<<s 'C' TX> BEGIN (a)
 DUP _rx>mem1 SWAP 128 + SWAP UNTIL DROP ;
: RX>BLK (--)
 _<<s 'C' TX> BLK(BEGIN (a)
 DUP BLK) = IF DROP BLK(BLK! BLK> 1+ 'BLK> ! THEN
 DUP _rx>mem1 SWAP 128 + SWAP UNTIL 2DROP ;

B14
: _snd128 (A:a -- A:a)
 0 128 >R BEGIN (crc)
 AC@+ DUP TX> (crc n) CRC16 (crc) NEXT
 L|M TX> TX> ;
: _ack? 0 BEGIN DROP RX< DUP 'C' = NOT UNTIL
 DUP $06 (ACK) = IF DROP 1
 ELSE $15 = NOT IF ABORT" out of sync" THEN 0 THEN ;
: _waitC
 ." Waiting for C..." BEGIN RX<? IF 'C' = ELSE 0 THEN UNTIL ;
: _mem>tx (addr pktstart pktend --)
 OVER - >R SWAP >A BEGIN (pkt)
 'P' EMIT DUP . SPC> $01 (SOH) TX> (pkt)
 1+ (pkt start at 1) DUP TX> $ff OVER - TX> (pkt+1)
 _snd128 _ack? NOT IF LEAVE THEN NEXT DROP ;

B15
: MEM>TX (a u -- Send u bytes to TX)
 _waitC 128 /MOD SWAP IF 1+ THEN (pktcnt) 0 SWAP _mem>tx
 $4 (EOT) TX> RX< DROP ;
: BLK>TX (b1 b2 --)
 _waitC OVER - (cnt) >R BEGIN (blk)
 'B' EMIT DUP . SPC> DUP BLK@ BLK((blk a)
 OVER 8 * DUP 8 + (a pktstart pktend) _mem>tx 1+ NEXT
 $4 (EOT) TX> RX< DROP ;

1.6 Block editor: 20-24 151

1.6 Block editor: 20-24

B20
\ Block editor. see doc/ed.
\ Cursor position in buffer. EDPOS/64 is line number
0 VALUE EDPOS
CREATE IBUF LNSZ 1+ ALLOT0 \ counted string, first byte is len
CREATE FBUF LNSZ 1+ ALLOT0
: L BLK> ." Block " DUP . NL> LIST ;
: B BLK> 1- BLK@ L ; : N BLK> 1+ BLK@ L ;
: IBUF+ IBUF 1+ ; : FBUF+ FBUF 1+ ;
: ILEN IBUF C@ ; : FLEN FBUF C@ ;
: EDPOS! [TO] EDPOS ; : EDPOS+! EDPOS + EDPOS! ;
: 'pos (pos -- a, addr of pos in memory) BLK(+ ;
: 'EDPOS EDPOS 'pos ;

B21
\ Block editor, private helpers
: _lpos (ln -- a) LNSZ * 'pos ;
: _pln (ln --) \ print line no ln with pos caret
 DUP _lpos DUP >A LNLEN 1 MAX >R BEGIN (lno)
 A> 'EDPOS = IF '^' EMIT THEN
 AC@+ SPC MAX EMIT NEXT (lno) SPC> 1+ . ;
: _zline (a --) LNSZ SPC FILL ; \ zero-out a line
: _type (buf --) \ *A* type into buf until end of INBUF
 IN<? ?DUP NOT IF DROP EXIT THEN OVER 1+ DUP _zline >A BEGIN
 (buf c) AC!+ IN<? ?DUP NOT UNTIL (buf)
 A> OVER - 1- (buf len) SWAP C! ;

B22
\ Block editor, T P U
\ user-facing lines are 1-based
: T 1- DUP LNSZ * EDPOS! _pln ;
: P IBUF _type IBUF+ 'EDPOS LNSZ MOVE BLK!! ;
: _mvln+ (ln -- move ln 1 line down)
 DUP 14 > IF DROP EXIT THEN
 _lpos DUP LNSZ + LNSZ MOVE ;
: _U (U without P, used in VE)
 15 EDPOS LNSZ / - ?DUP IF
 >R 14 BEGIN DUP _mvln+ 1- NEXT DROP THEN ;
: U _U P ;

152 1 Architecture independent

B23
\ Block editor, F i
: _F (F without _type and _pln. used in VE)
 'EDPOS 1+ BEGIN (a)
 FBUF+ C@ OVER BLK) OVER - (a c a u) [C]?
 DUP 0< IF 2DROP EXIT THEN (a idx) + (a)
 DUP FBUF+ FLEN []= IF BLK(- EDPOS! EXIT THEN 1+ AGAIN ;
: F FBUF _type _F EDPOS LNSZ / _pln ;
: _rbufsz (size of linebuf to the right of curpos)
 EDPOS LNSZ MOD LNSZ -^ ;
: _I (I without _pln and _type. used in VE)
 _rbufsz ILEN OVER < IF (rsize)
 ILEN - (chars-to-move)
 'EDPOS DUP ILEN + ROT (a a+ilen ctm) MOVE- ILEN
 THEN (len-to-insert)
 IBUF+ 'EDPOS ROT MOVE (ilen) BLK!! ;
: I IBUF _type _I EDPOS LNSZ / _pln ;

B24
\ Block editor, X E Y
: icpy (n -- copy n chars from cursor to IBUF)
 DUP IBUF C! IBUF+ _zline 'EDPOS IBUF+ (n a buf) ROT MOVE ;
: _X (n --)
 ?DUP NOT IF EXIT THEN
 _rbufsz MIN DUP icpy 'EDPOS 2DUP + (n a1 a1+n)
 SWAP _rbufsz MOVE (n)
 \ get to next line - n
 DUP EDPOS $ffc0 AND $40 + -^ 'pos (n a)
 SWAP SPC FILL BLK!! ;
: X _X EDPOS LNSZ / _pln ;
: _E FLEN _X ;
: E FLEN X ;
: Y FBUF IBUF LNSZ 1+ MOVE ;

1.7 Visual editor: 25-32

B25
\ Visual text editor. VALUEs, lg? width pos@ mode! ...
3 VALUES PREVPOS xoff ACC
LNSZ 3 + CONSTANT MAXW
10 CONSTANT MARKCNT
CREATE MARKS MARKCNT << << ALLOT0
: lg? COLS MAXW > ; : col- MAXW COLS MIN -^ ;
: width lg? IF LNSZ ELSE COLS THEN ;
: acc@ ACC 1 MAX ; : pos@ (x y --) EDPOS LNSZ /MOD ;
: num (c --) \ c is in range 0-9
 '0' - ACC 10 * + [TO] ACC ;
: mode! (c --) 4 col- CELL! ;

1.7 Visual editor: 25-32 153

B26
\ VE, rfshln contents selblk pos! xoff? setpos
: _ (ln --) \ refresh line ln
 DUP _lpos xoff + SWAP 3 + COLS * lg? IF 3 + THEN
 width CELLS! ;
: rfshln pos@ NIP _ ; \ refresh active line
: contents 16 >R 0 BEGIN DUP _ 1+ NEXT DROP ;
: selblk BLK@ contents ;
: pos! (newpos --) EDPOS [TO] PREVPOS
 DUP 0< IF DROP 0 THEN 1023 MIN EDPOS! ;
: xoff? pos@ DROP (x)
 xoff ?DUP IF < IF 0 [TO] xoff contents THEN ELSE
 width >= IF LNSZ COLS - [TO] xoff contents THEN THEN ;
: setpos (--) pos@ 3 + (header) SWAP (y x) xoff -
 lg? IF 3 + (gutter) THEN SWAP AT-XY ;
: 'mark (-- a) ACC MARKCNT MOD << << MARKS + ;

B27
\ VE, cmv buftype bufprint bufs
: cmv (n -- , char movement) acc@ * EDPOS + pos! ;
: buftype (buf ln --)
 3 OVER AT-XY KEY DUP SPC < IF 2DROP DROP EXIT THEN (b ln c)
 SWAP COLS * 3 + 3 col- nspcs (buf c)
 IN(SWAP LNTYPE DROP BEGIN (buf a) KEY LNTYPE UNTIL
 IN(- (buf len) SWAP C!+ IN(SWAP LNSZ MOVE IN$;
: bufprint (buf pos --)
 DUP LNSZ nspcs OVER C@ ROT 1+ ROT> CELLS! ;
: bufs (--)
 COLS (pos) 'I' OVER CELL! ':' OVER 1+ CELL! (pos)
 IBUF OVER 3 + bufprint (pos)
 << 'F' OVER CELL! ':' OVER 1+ CELL! (pos)
 FBUF SWAP 3 + bufprint ;
: bol EDPOS $3c0 AND pos! ;
: insl _U EDPOS $3c0 AND DUP pos! 'pos _zline BLK!! contents ;

B28
\ VE cmds
29 CONSTANT cmdcnt
CREATE cmdl ," G[]IFYEXhlkjHLg@!wBWb&mtfROoD"
cmdcnt WORDTBL cmds
:W (G) ACC selblk ;
:W ([) BLK> acc@ - selblk ; :W (]) BLK> acc@ + selblk ;
:W (I) 'I' mode! IBUF 1 buftype _I bufs rfshln ;
:W (F) 'F' mode! FBUF 2 buftype _F bufs setpos ;
:W (Y) Y bufs ; :W (E) _E bufs rfshln ;
:W (X) acc@ _X bufs rfshln ;
:W (h) -1 cmv ; :W (l) 1 cmv ;
:W (k) -64 cmv ; :W (j) 64 cmv ;

154 1 Architecture independent

B29
\ VE cmds
'W bol (H)
:W (L) EDPOS DUP $3f OR 2DUP = IF 2DROP EXIT THEN SWAP BEGIN
 (res p) 1+ DUP 'pos C@ WS? NOT IF NIP DUP 1+ SWAP THEN
 DUP $3f AND $3f = UNTIL DROP pos! ;
:W (g) ACC 1 MAX 1- 64 * pos! ;
:W (@) BLK> BLK((blk@) 0 BLKDTY ! contents ;
:W (!) BLK> FLUSH 'BLK> ! ;

B30
\ VE cmds
1 VALUE +-
: go>> 1 [TO] +- ; : go<< -1 [TO] +- ;
: C@+- (a -- a-1 c) DUP C@ SWAP +- + SWAP ;
: word>> BEGIN C@+- WS? UNTIL ;
: ws>> BEGIN C@+- WS? NOT UNTIL ;
: bpos! BLK(- pos! ;
: _ 'EDPOS acc@ >R BEGIN word>> ws>> NEXT +- - bpos! ;
:W (w) go>> _ ; :W (B) go<< _ ;
: _ 'EDPOS acc@ >R BEGIN +- + ws>> word>> NEXT +- << - bpos! ;
:W (W) go>> _ ; :W (b) go<< _ ;
:W (&) WIPE contents ;
:W (m) BLK> 'mark ! EDPOS 'mark 1+ 1+ ! ;
:W (t) 'mark 1+ 1+ @ pos! 'mark @ selblk ;

B31
\ VE cmds
:W (f) EDPOS PREVPOS 2DUP = IF 2DROP EXIT THEN
 2DUP > IF DUP pos! SWAP THEN
 (p1 p2, p1 < p2) OVER - LNSZ MIN (pos len) DUP FBUF C!
 FBUF+ _zline SWAP 'pos FBUF+ (len src dst) ROT MOVE bufs ;
:W (R) \ replace mode
 'R' mode!
 BEGIN setpos KEY DUP BS? IF -1 EDPOS+! DROP 0 THEN
 DUP SPC >= IF
 DUP EMIT 'EDPOS C! 1 EDPOS+! BLK!! 0
 THEN UNTIL ;
'W insl (O)
:W (o) EDPOS $3c0 < IF EDPOS 64 + EDPOS! insl THEN ;
:W (D) bol LNSZ icpy
 acc@ LNSZ * (delsz) >R 'EDPOS R@ + 'EDPOS (src dst)
 BLK) OVER - MOVE BLK) R@ - R> SPC FILL BLK!! bufs contents ;

1.7 Visual editor: 25-32 155

B32
\ VE final: status nums gutter handle VE
: status 0 $20 nspcs 0 0 AT-XY ." BLK" SPC> BLK> . SPC> ACC .
 SPC> pos@ 1+ . ',' EMIT . xoff IF '>' EMIT THEN SPC>
 BLKDTY @ IF '*' EMIT THEN SPC mode! ;
: nums 16 >R 1 BEGIN DUP 2 + 0 SWAP AT-XY DUP . 1+ NEXT DROP ;
: gutter lg? IF 19 >R BEGIN
 '|' R@ 1- COLS * MAXW + CELL! NEXT THEN ;
: handle (c -- f)
 DUP '0' '9' =><= IF num 0 EXIT THEN
 DUP cmdl cmdcnt [C]? 1+ ?DUP IF 1- cmds SWAP WEXEC THEN
 0 [TO] ACC 'q' = ;
: VE
 BLK> 0< IF 0 BLK@ THEN
 clrscr 0 [TO] ACC 0 [TO] PREVPOS
 nums bufs contents gutter
 BEGIN xoff? status setpos KEY handle UNTIL 0 19 AT-XY ;

1.8 Memory editor: 35-39

B35
\ Memory Editor. See doc/me
CREATE CMD '#' C, 0 C,
CREATE BUF '$' C, 4 ALLOT \ always hex
\ POS is relative to ADDR
4 VALUES ADDR POS HALT? ASCII?
16 VALUE AWIDTH
LINES 2 - CONSTANT AHEIGHT
AHEIGHT AWIDTH * CONSTANT PAGE
COLS 33 < [IF] 8 TO AWIDTH [THEN]
: addr ADDR POS + ;
CREATE _ ," 0123456789abcdef"
: hex! (c pos --)
 OVER 16 / _ + C@ OVER CELL! (c pos)
 1+ SWAP $f AND _ + C@ SWAP CELL! ;
: bottom 0 LINES 1- AT-XY ;

B36
\ Memory Editor, line rfshln contents showpos
: line (ln --)
 DUP AWIDTH * ADDR + >A 1+ COLS * (pos)
 ':' OVER CELL! A> <<8 >>8 OVER 1+ hex! 4 + (pos+4)
 AWIDTH >> >R A> SWAP BEGIN (a-old pos)
 AC@+ (a-old pos c) OVER hex! (a-old pos)
 1+ 1+ AC@+ OVER hex! 3 + (a-old pos+5) NEXT
 SWAP >A AWIDTH >R BEGIN (pos)
 AC@+ DUP SPC - $5e > IF DROP '.' THEN OVER CELL! 1+ NEXT
 DROP ;
: rfshln POS AWIDTH / line ;
: contents LINES 2 - >R BEGIN R@ 1- line NEXT ;
: showpos
 POS AWIDTH /MOD (r q) 1+ SWAP (y r) ASCII? IF
 AWIDTH >> 5 * + ELSE DUP 1 AND << SWAP >> 5 * + THEN
 4 + (y x) SWAP AT-XY ;

156 1 Architecture independent

B37
\ Memory Editor, addr! pos! status type typep
: addr! $fff0 AND [TO] ADDR contents ;
: pos! DUP 0< IF PAGE + THEN DUP PAGE >= IF PAGE - THEN
 [TO] POS showpos ;
: status 0 COLS nspcs
 0 0 AT-XY ." A: " ADDR .X SPC> ." C: " POS .X SPC> ." S: "
 PSDUMP POS pos! ;
: type (cnt -- sa sl) BUF 1+ >A >R BEGIN
 KEY DUP SPC < IF DROP LEAVE ELSE DUP EMIT AC!+ THEN NEXT
 BUF A> BUF - ;
: typep (cnt -- n? f)
 type (sa sl) DUP IF PARSE ELSE NIP THEN ;

B38
\ Memory Editor, almost all actions
: #] ADDR PAGE + addr! ; : #[ADDR PAGE - addr! ;
: #J ADDR $10 + addr! POS $10 - pos! ;
: #K ADDR $10 - addr! POS $10 + pos! ;
: #l POS 1+ pos! ; : #h POS 1- pos! ;
: #j POS AWIDTH + pos! ; : #k POS AWIDTH - pos! ;
: #m addr ; : #@ addr @ ; : #! addr ! contents ;
: #g SCNT IF DUP ADDR - PAGE < IF
 ADDR - pos! ELSE DUP addr! $f AND pos! THEN THEN ;
: #G bottom 4 typep IF #g THEN ;
: #a ASCII? NOT [TO] ASCII? showpos ;
: #f #@ #g ; : #e #m #f ;
: _h SPC> showpos 2 typep ;
: _a showpos KEY DUP SPC < IF DROP 0 ELSE DUP EMIT 1 THEN ;
: #R BEGIN SPC> ASCII? IF _a ELSE _h THEN (n? f) IF
 addr C! rfshln #l 0 ELSE 1 THEN UNTIL rfshln ;

B39
\ Memory Editor, #q handle ME
: #q 1 [TO] HALT? ;
: handle (c -- f)
 CMD 1+ C! CMD 2 FIND IF EXECUTE THEN ;
: ME 0 [TO] HALT? clrscr contents 0 pos! BEGIN
 status KEY handle HALT? UNTIL bottom ;

1.9 AVR SPI programmer: 40-43 157

1.9 AVR SPI programmer: 40-43

B40
\ AVR Programmer, B160-B163. doc/avr.txt
\ page size in words, 64 is default on atmega328P
64 VALUE aspfpgsz
0 VALUE aspprevx
: _x (a -- b) DUP [TO] aspprevx (spix) ;
: _xc (a -- b) DUP (spix) (a b)
 DUP aspprevx = NOT IF ABORT" AVR err" THEN (a b)
 SWAP [TO] aspprevx (b) ;
: _cmd (b4 b3 b2 b1 -- r4) _xc DROP _xc DROP _xc DROP _x ;
: asprdy (--) BEGIN 0 0 0 $f0 _cmd 1 AND NOT UNTIL ;
: asp$ (spidevid --)
 (RESET pulse) DUP (spie) 0 (spie) (spie)
 (wait >20ms) 220 TICKS
 (enable prog) $ac (spix) DROP
 $53 _x DROP 0 _xc DROP 0 _x DROP ;
: asperase 0 0 $80 $ac _cmd asprdy ;

B41
(fuse access. read/write one byte at a time)
: aspfl@ (-- lfuse) 0 0 0 $50 _cmd ;
: aspfh@ (-- hfuse) 0 0 $08 $58 _cmd ;
: aspfe@ (-- efuse) 0 0 $00 $58 _cmd ;
: aspfl! (lfuse --) 0 $a0 $ac _cmd ;
: aspfh! (hfuse --) 0 $a8 $ac _cmd ;
: aspfe! (efuse --) 0 $a4 $ac _cmd ;

B42
: aspfb! (n a --, write word n to flash buffer addr a)
 SWAP L|M SWAP (a hi lo) ROT (hi lo a)
 DUP ROT (hi a a lo) SWAP (hi a lo a)
 0 $40 (hi a lo a 0 $40) _cmd DROP (hi a)
 0 $48 _cmd DROP ;
: aspfp! (page --, write buffer to page)
 0 SWAP aspfpgsz * L|M (0 lsb msb)
 $4c _cmd DROP asprdy ;
: aspf@ (page a -- n, read word from flash)
 SWAP aspfpgsz * OR (addr) L|M (lsb msb)
 2DUP 0 ROT> (lsb msb 0 lsb msb)
 $20 _cmd (lsb msb low)
 ROT> 0 ROT> (low 0 lsb msb) $28 _cmd <<8 OR ;

158 1 Architecture independent

B43
: aspe@ (addr -- byte, read from EEPROM)
 0 SWAP L|M SWAP (0 msb lsb)
 $a0 (0 msb lsb $a0) _cmd ;
: aspe! (byte addr --, write to EEPROM)
 L|M SWAP (b msb lsb)
 $c0 (b msb lsb $c0) _cmd DROP asprdy ;

1.10 Sega ROM signer: 45

B45
(Sega ROM signer. See doc/sega.txt)
: segasig (addr size --)
 $2000 OVER LSHIFT (a sz bytesz) $10 - >R (a sz)
 SWAP >A 0 BEGIN (sz csum) AC@+ + NEXT (sz csum)
 'T' AC!+ 'M' AC!+ 'R' AC!+ SPC AC!+ 'S' AC!+
 'E' AC!+ 'G' AC!+ 'A' AC!+ 0 AC!+ 0 AC!+
 (sum's LSB) DUP AC!+ (MSB) >>8 AC!+
 (sz) 0 AC!+ 0 AC!+ 0 AC!+ $4a + AC!+ ;

1.11 Cross compilation: 200-205

B200
\ Cross compilation program, generic part. See doc/cross
0 VALUE BIN(\ binary start in target's addr
0 VALUE XORG \ binary start address in host's addr
0 VALUE BIGEND? \ is target big-endian?
3 VALUES L1 L2 L3
: PC HERE XORG - BIN(+ ;
: XSTART (bin(--) [TO] BIN(HERE [TO] XORG ;
: OALLOT (oa --) XORG + HERE - ALLOT0 ;
: |T L|M BIGEND? NOT IF SWAP THEN ;
: T! (n a --) SWAP |T ROT C!+ C! ;
: T, (n --) |T C, C, ;
: T@ C@+ SWAP C@ BIGEND? IF SWAP THEN <<8 OR ;
: XCOMPC 201 205 LOADR ; : FONTC 262 263 LOADR ;

1.11 Cross compilation: 200-205 159

B201
\ Cross compilation program. COS-specific. See doc/cross
: COREL 210 224 LOADR ; : COREH 225 229 LOADR ;
: BLKSUB 230 234 LOADR ; : GRIDSUB 240 241 LOADR ;
: PS2SUB 246 248 LOADR ; : RXTXSUB 235 LOAD ;
'? HERESTART NOT [IF] 0 CONSTANT HERESTART [THEN]
0 VALUE XCURRENT \ CURRENT in target system, in target's addr
5 VALUES lblnext lblcell lbldoes lblxt lblval
'? 'A NOT [IF] SYSVARS $06 + CONSTANT 'A [THEN]
'? 'N NOT [IF] SYSVARS $18 + CONSTANT 'N [THEN]
6 VALUES (n)* (b)* (br)* (?br)* EXIT* (next)*
CREATE '~ 2 ALLOT

B202
\ Cross compilation program
: _xoff (a -- a) XORG BIN(- ;
: _wl (w -- len) 1- C@ $7f AND ;
: _ws (w len -- sa) - 3 - ;
: _xfind (sa sl -- w? f) >R >A XCURRENT BEGIN (w R:sl)
 _xoff + DUP _wl R@ = IF (w) DUP R@ _ws A> R@ (w a1 a2 u)
 []= IF (w) R~ 1 EXIT THEN THEN
 3 - (prev field) T@ ?DUP NOT UNTIL R~ 0 (not found) ;
: XFIND (sa sl -- w) _xfind NOT IF (wnf) THEN _xoff - ;
: X' WORD XFIND ;
: '? WORD _xfind DUP IF NIP THEN ;
: _ (lbl str --)
 CURWORD S= IF XCURRENT SWAP VAL! ELSE DROP THEN ;
: ENTRY
 WORD TUCK MOVE, XCURRENT T, C, HERE _xoff - [TO] XCURRENT ;

B203
\ Cross compilation program
: ;CODE lblnext JMPi, ;
: ALIAS X' ENTRY JMPi, ; : *ALIAS ENTRY JMP(i), ;
: CONSTANT ENTRY i>, ;CODE ;
: CONSTS >R BEGIN RUN1 CONSTANT NEXT ;
: *VALUE ENTRY (i)>, ;CODE ; : CREATE ENTRY lblcell CALLi, ;
: CODE ENTRY ['] EXIT* LIT" EXIT" _ ['] (b)* LIT" (b)" _
 ['] (n)* LIT" (n)" _ ['] (br)* LIT" (br)" _
 ['] (?br)* LIT" (?br)" _ ['] (next)* LIT" (next)" _ ;

160 1 Architecture independent

B204
\ Cross compilation program
: LITN DUP $ff > IF (n)* T, T, ELSE (b)* T, C, THEN ;
: imm? (w -- f) 1- C@ $80 AND ;
: compile BEGIN WORD LIT" ;" S= IF EXIT* T, EXIT THEN
 CURWORD PARSE IF LITN ELSE CURWORD _xfind IF (w)
 DUP imm? IF ABORT" immed!" THEN _xoff - T,
 ELSE CURWORD FIND IF (w)
 DUP imm? IF EXECUTE ELSE (wnf) THEN
 ELSE (wnf) THEN
 THEN (_xfind) THEN (PARSE) AGAIN ;
: :~ HERE _xoff - '~ ! lblxt CALLi, compile ;
: ~ '~ @ T, ; IMMEDIATE
: _ CODE lblxt CALLi, compile ; \ : can't have its name now
: ?: '? IF LIT" ;" WAITW ELSE CURWORD WORD! _ THEN ;

B205
\ Cross compilation program
: XWRAP COREH HERESTART ?DUP NOT IF PC THEN
 XORG 8 (LATEST) + T! XCURRENT XORG 6 (CURRENT) + T! ;
: ['] WORD XFIND LITN ; IMMEDIATE
: COMPILE [COMPILE] ['] LIT" ," XFIND T, ; IMMEDIATE
: IF (?br)* T, HERE 1 ALLOT ; IMMEDIATE
: ELSE (br)* T, 1 ALLOT [COMPILE] THEN HERE 1- ; IMMEDIATE
: AGAIN (br)* T, HERE - C, ; IMMEDIATE
: UNTIL (?br)* T, HERE - C, ; IMMEDIATE
: NEXT (next)* T, HERE - C, ; IMMEDIATE
: LIT" (br)* T, HERE 1 ALLOT HERE ," TUCK HERE -^ SWAP
 [COMPILE] THEN SWAP _xoff - LITN LITN ; IMMEDIATE
: [COMPILE] WORD XFIND T, ; IMMEDIATE
: IMMEDIATE XCURRENT _xoff + 1- DUP C@ $80 OR SWAP C! ;
':' ' _ 4 - C! \ give : its real name now
0 XSTART

1.12 Core words: 210-229

B210
\ Core Forth words. See doc/cross
SYSVARS $02 + DUP CONSTANT 'CURRENT *VALUE CURRENT
SYSVARS $04 + DUP CONSTANT 'HERE *VALUE HERE
ALIAS HERE PC
SYSVARS CONSTANT IOERR
$40 CONSTANT LNSZ
CODE NOOP ;CODE
?: = - NOT ;
?: > SWAP < ;
?: 0< $7fff > ; ?: 0>= $8000 < ; ?: >= < NOT ; ?: <= > NOT ;
?: -^ SWAP - ;
?: 1+ 1 + ; ?: 1- 1 - ;

1.12 Core words: 210-229 161

B211
\ Core words, 2DROP 2DUP NIP TUCK ROT> =><= / MOD
?: 2DROP DROP DROP ;
?: 2DUP OVER OVER ;
?: NIP SWAP DROP ;
?: TUCK SWAP OVER ;
?: ROT> ROT ROT ;
?: =><= (n l h -- f) OVER - ROT> (h n l) - >= ;
: / /MOD NIP ; : MOD /MOD DROP ;

B212
\ Core words, << >> <<8 >>8 L|M RSHIFT LEAVE +! VAL! A> >A ...
?: << 2 * ; ?: >> 2 / ;
?: RSHIFT ?DUP IF >R BEGIN >> NEXT THEN ;
?: LSHIFT ?DUP IF >R BEGIN << NEXT THEN ;
?: <<8 8 LSHIFT ; ?: >>8 8 RSHIFT ;
?: L|M DUP <<8 >>8 SWAP >>8 ;
?: +! (n a --) TUCK @ + SWAP ! ;
?: A> ['A LITN] @ ; ?: >A ['A LITN] ! ;
?: A>R R> A> >R >R ; ?: R>A R> R> >A >R ;
?: A+ 1 ['A LITN] +! ; ?: A- -1 ['A LITN] +! ;
?: AC@ A> C@ ; ?: AC! A> C! ;
: AC@+ AC@ A+ ; : AC!+ AC! A+ ;
: LEAVE R> R~ 1 >R >R ;
: VAL! 3 + ! ;

B213
\ Core words, C@+ ALLOT FILL IMMEDIATE , L, M, MOVE MOVE, ..
: C@+ DUP 1+ SWAP C@ ;
: C!+ TUCK C! 1+ ;
: ALLOT 'HERE +! ;
: FILL (a u b --) ROT> >R >A BEGIN DUP AC!+ NEXT DROP ;
: ALLOT0 (u --) HERE OVER 0 FILL ALLOT ;
: IMMEDIATE CURRENT 1- DUP C@ $80 OR SWAP C! ;
: , HERE ! 2 ALLOT ; : C, HERE C! 1 ALLOT ;
: L, DUP C, >>8 C, ; : M, DUP >>8 C, C, ;
?: MOVE (src dst u --) ?DUP IF
 >R >A BEGIN (src) C@+ AC!+ NEXT DROP THEN ;
: MOVE, (a u --) HERE OVER ALLOT SWAP MOVE ;

162 1 Architecture independent

B214
\ Core words, [C]? CRC16 JMPi, CALLi, i>,
?: [C]? (c a u -- i) \ Guards A
 ?DUP NOT IF 2DROP -1 EXIT THEN A>R OVER >R >R >A (c)
 BEGIN DUP AC@+ = IF LEAVE THEN NEXT (c)
 A- AC@ = IF A> R> - (i) ELSE R~ -1 THEN R>A ;
?: []= (a1 a2 u -- f) \ Guards A
 ?DUP NOT IF 2DROP 1 EXIT THEN A>R >R >A (a1)
 BEGIN AC@+ OVER C@ = NOT IF R~ R>A DROP 0 EXIT THEN 1+ NEXT
 DROP R>A 1 ;
?: CRC16 (c n -- c)
 <<8 XOR 8 >R BEGIN (c)
 DUP 0< IF << $1021 XOR ELSE << THEN NEXT ;

B215
\ Core words, we begin EMITting
SYSVARS $0e + DUP CONSTANT 'EMIT *ALIAS EMIT
: STYPE >R >A BEGIN AC@+ EMIT NEXT ;
5 CONSTS $04 EOT $08 BS $0a LF $0d CR $20 SPC
SYSVARS $0a + CONSTANT NL
: SPC> SPC EMIT ;
: NL> NL @ L|M ?DUP IF EMIT THEN EMIT ;
: STACK? SCNT 0< IF LIT" stack underflow" STYPE ABORT THEN ;

B216
\ Core words, number formatting
: . (n --)
 ?DUP NOT IF '0' EMIT EXIT THEN \ 0 is a special case
 DUP 0< IF '-' EMIT -1 * THEN
 $ff SWAP (stop) BEGIN 10 /MOD (d q) ?DUP NOT UNTIL
 BEGIN '0' + EMIT DUP 9 > UNTIL DROP ;
CREATE _hex ," 0123456789abcdef"
: .x <<8 >>8 16 /MOD (l h) _hex + C@ EMIT _hex + C@ EMIT ;
: .X L|M .x .x ;

1.12 Core words: 210-229 163

B217
\ Core words, literal parsing
:~ (sl -- n? f) \ parse unsigned decimal
 >R 0 BEGIN (r)
 10 * AC@+ (r c) '0' - DUP 9 > IF
 2DROP R~ 0 EXIT THEN + NEXT (r) 1 ;
: PARSE (sa sl -- n? f) \ *A*
 OVER C@ ''' = IF (sa sl)
 3 = IF 1+ DUP 1+ C@ ''' = IF C@ 1 EXIT THEN THEN
 DROP 0 EXIT THEN (sa sl)
 OVER C@ '$' = IF (sa sl) 1- >R 1+ >A 0 BEGIN (r)
 16 * AC@+ (r c) $20 OR _hex $10 [C]?
 DUP 0< IF 2DROP R~ 0 EXIT THEN + NEXT (r) 1 EXIT THEN
 SWAP >A DUP 1 > AC@ '-' = AND IF (sl)
 A+ 1- ~ IF 0 -^ 1 ELSE 0 THEN ELSE ~ THEN ;

B218
\ Core words, input buffer
SYSVARS $10 + DUP CONSTANT 'KEY? *ALIAS KEY?
: KEY BEGIN KEY? UNTIL ;
SYSVARS $20 + CONSTANT INBUF
SYSVARS $1c + DUP CONSTANT 'IN(*VALUE IN(
SYSVARS $1e + DUP CONSTANT 'IN> *VALUE IN>
SYSVARS $08 + CONSTANT LN<
: IN) IN(LNSZ + ;
PC BS C, $7f (DEL) C,
: BS? [(PC) LITN] 2 [C]? 0>= ;

B219
\ Core words, input buffer
\ type c into ptr inside INBUF. f=true if typing should stop
: LNTYPE (ptr c -- ptr+-1 f)
 DUP BS? IF (ptr c)
 DROP DUP IN(> IF 1- BS EMIT THEN SPC> BS EMIT 0
 ELSE (ptr c) \ non-BS
 DUP SPC < IF DROP DUP IN) OVER - 0 FILL 1 ELSE
 TUCK EMIT C!+ DUP IN) = THEN THEN ;
: RDLN (--) \ Read 1 line in IN(
 LIT" ok" STYPE NL> IN(BEGIN KEY LNTYPE UNTIL DROP NL> ;
: IN<? (-- c-or-0)
 IN> IN) < IF IN> C@+ SWAP 'IN> ! ELSE 0 THEN ;
: IN< (-- c) IN<? ?DUP NOT IF
 LN< @ EXECUTE IN('IN> ! SPC THEN ;
: IN$ ['] RDLN LN< ! INBUF 'IN(! IN) 'IN> ! ;

164 1 Architecture independent

B220
\ Core words, WORD parsing
: ," BEGIN IN< DUP '"' = IF DROP EXIT THEN C, AGAIN ;
: WS? SPC <= ;
: TOWORD (--) BEGIN IN< WS? NOT UNTIL ;
SYSVARS $12 + CONSTANT 'CURWORD
: CURWORD (-- sa sl) 'CURWORD 1+ @ 'CURWORD C@ ;
:~ (f sa sl --) 'CURWORD C!+ TUCK ! 1+ 1+ C! ;
: WORD (-- sa sl)
 'CURWORD 3 + C@ IF CURWORD ELSE
 TOWORD IN> 1- 0 (sa sl) BEGIN 1+ IN<? WS? UNTIL THEN
 (sa sl) 2DUP 0 ROT> ~ ;
: WORD! 1 ROT> ~ ;

B221
\ Core words, FIND and INTERPRET loop
?: FIND (sa sl -- w? f) \ Guards A
 A>R >R >A CURRENT BEGIN (w R:sl)
 DUP 1- C@ $7f AND (wlen) R@ = IF (w)
 DUP R@ - 3 - A> R@ (w a1 a2 u)
 []= IF (w) R~ 1 R>A EXIT THEN THEN
 3 - (prev field) @ ?DUP NOT UNTIL R~ 0 R>A (not found) ;
: (wnf) CURWORD STYPE LIT" word not found" STYPE ABORT ;
: RUN1 \ read next word in stream and interpret it
 WORD PARSE NOT IF
 CURWORD FIND IF EXECUTE STACK? ELSE (wnf) THEN THEN ;
: INTERPRET BEGIN RUN1 AGAIN ;
: nC, (n --) >R BEGIN RUN1 C, NEXT ;

B222
\ Core words, CODE '? ' TO FORGET
: CODE WORD TUCK MOVE, (len)
 CURRENT , C, \ write prev value and size
 HERE 'CURRENT ! ;
: '? WORD FIND DUP IF NIP THEN ;
: ' WORD FIND NOT IF (wnf) THEN ;
: TO ' VAL! ;
: FORGET
 ' DUP (w w)
 \ HERE must be at the end of prev's word, that is, at the
 \ beginning of w.
 DUP 1- C@ (len) $7f AND (rm IMMEDIATE)
 3 + (fixed header len) - 'HERE ! (w)
 (get prev addr) 3 - @ 'CURRENT ! ;

1.12 Core words: 210-229 165

B223
\ Core words, S= WAITW [IF] _bchk
: S= (sa1 sl1 sa2 sl2 -- f)
 ROT OVER = IF (same len, s2 s1 l) []=
 ELSE DROP 2DROP 0 THEN ;
: WAITW (sa sl --) BEGIN 2DUP WORD S= UNTIL 2DROP ;
: [IF] NOT IF LIT" [THEN]" WAITW THEN ;
ALIAS NOOP [THEN]
: _bchk DUP $80 + $ff > IF LIT" br ovfl" STYPE ABORT THEN ;

B224
\ Core words, DUMP .S
: DUMP (n a --) \ *A*
 >A 8 /MOD SWAP IF 1+ THEN >R BEGIN
 ':' EMIT A> DUP .x SPC> (a)
 4 >R BEGIN AC@+ .x AC@+ .x SPC> NEXT (a) >A
 8 >R BEGIN AC@+ DUP SPC - $5e > IF DROP '.' THEN EMIT NEXT
 NL> NEXT ;
: PSDUMP SCNT NOT IF EXIT THEN
 SCNT >A BEGIN DUP .X SPC> >R SCNT NOT UNTIL
 BEGIN R> SCNT A> = UNTIL ;
: .S (--)
 LIT" SP " STYPE SCNT .x SPC> LIT" RS " STYPE RCNT .x SPC>
 LIT" -- " STYPE STACK? PSDUMP ;

B225
\ Core high, CREATE DOER DOES> CODE ALIAS VALUE CONSTANT
: ;CODE [lblnext LITN] HERE JMPi! ALLOT ;
: CREATE CODE [lblcell LITN] HERE CALLi! ALLOT ;
: DOER CODE [lbldoes LITN] HERE CALLi! 1+ 1+ ALLOT ;
\ Because we pop RS below, we'll exit parent definition
: _ R> CURRENT 3 + ! ;
: DOES> COMPILE _ [lblxt LITN] HERE CALLi! ALLOT ; IMMEDIATE
: ALIAS ' CODE HERE JMPi! ALLOT ;
: VALUE CODE [lblval LITN] HERE CALLi! ALLOT , ;
: VALUES >R BEGIN 0 VALUE NEXT ;
: CONSTANT CODE HERE i>! ALLOT ;CODE ;
: CONSTS >R BEGIN RUN1 CONSTANT NEXT ;

166 1 Architecture independent

B226
\ Core high, BOOT
:~ IN$ INTERPRET BYE ;
'~ @ XORG $0a (stable ABI (main)) + T!
: BOOT
 [BIN($06 (CURRENT) + LITN] @ 'CURRENT !
 [BIN($08 (LATEST) + LITN] @ 'HERE !
 ['] (emit) 'EMIT ! ['] (key?) 'KEY? !
 0 'CURWORD 3 + C!
 0 IOERR ! $0d0a (CR/LF) NL !
 INIT LIT" Collapse OS" STYPE ABORT ;
XCURRENT XORG $04 (stable ABI BOOT) + T!

B227
\ Core high, LITN :
: LITN DUP >>8 IF COMPILE (n) , ELSE COMPILE (b) C, THEN ;
: XTCOMP [lblxt LITN] HERE CALLi! ALLOT BEGIN
 WORD LIT" ;" S= IF COMPILE EXIT EXIT THEN
 CURWORD PARSE IF LITN ELSE CURWORD FIND IF
 DUP 1- C@ $80 AND (imm?) IF EXECUTE ELSE , THEN
 ELSE (wnf) THEN THEN
 AGAIN ;
: : CODE XTCOMP ;

B228
\ Core high, IF..ELSE..THEN (\
: IF (-- a | a: br cell addr)
 COMPILE (?br) HERE 1 ALLOT (br cell allot) ; IMMEDIATE
: THEN (a -- | a: br cell addr)
 DUP HERE -^ _bchk SWAP (a-H a) C! ; IMMEDIATE
: ELSE (a1 -- a2 | a1: IF cell a2: ELSE cell)
 COMPILE (br) 1 ALLOT [COMPILE] THEN
 HERE 1- (push a. 1- for allot offset) ; IMMEDIATE
: (LIT")" WAITW ; IMMEDIATE
: \ IN) 'IN> ! ; IMMEDIATE
: LIT"
 COMPILE (br) HERE 1 ALLOT HERE ," TUCK HERE -^ SWAP
 [COMPILE] THEN SWAP LITN LITN ; IMMEDIATE

1.12 Core words: 210-229 167

B229
\ Core high, .", ABORT", BEGIN..AGAIN..UNTIL, many others.
: ." [COMPILE] LIT" COMPILE STYPE ; IMMEDIATE
: ABORT" [COMPILE] ." COMPILE ABORT ; IMMEDIATE
: BEGIN HERE ; IMMEDIATE
: AGAIN COMPILE (br) HERE - _bchk C, ; IMMEDIATE
: UNTIL COMPILE (?br) HERE - _bchk C, ; IMMEDIATE
: NEXT COMPILE (next) HERE - _bchk C, ; IMMEDIATE
: [TO] ' LITN COMPILE VAL! ; IMMEDIATE
: [INTERPRET ; IMMEDIATE
:] R~ R~ ; \ INTERPRET+RUN1
: COMPILE ' LITN ['] , , ; IMMEDIATE
: [COMPILE] ' , ; IMMEDIATE
: ['] ' LITN ; IMMEDIATE

1.13 BLK subsystem: 230-234

B230
\ BLK subsystem. See doc/blk
BLK_MEM CONSTANT BLK(\ $400 + "\S "
BLK_MEM $400 + CONSTANT BLK)
\ Current blk pointer -1 means "invalid"
BLK_MEM $403 + DUP CONSTANT 'BLK> *VALUE BLK>
\ Whether buffer is dirty
BLK_MEM $405 + CONSTANT BLKDTY
BLK_MEM $407 + CONSTANT BLKIN>
: BLK$ 0 BLKDTY ! -1 'BLK> ! LIT" \S " BLK) SWAP MOVE ;

B231
: BLK! (--) BLK> BLK((blk!) 0 BLKDTY ! ;
: FLUSH BLKDTY @ IF BLK! THEN -1 'BLK> ! ;
: BLK@ (n --)
 DUP BLK> = IF DROP EXIT THEN
 FLUSH DUP 'BLK> ! BLK((blk@) ;
: BLK!! 1 BLKDTY ! ;
: WIPE BLK(1024 SPC FILL BLK!! ;
: COPY (src dst --) FLUSH SWAP BLK@ 'BLK> ! BLK! ;

168 1 Architecture independent

B232
: LNLEN (a -- len) \ len based on last visible char in line
 1- LNSZ >R BEGIN
 DUP R@ + C@ SPC > IF DROP R> EXIT THEN NEXT DROP 0 ;
: EMITLN (a --) \ emit LNSZ chars from a or stop at CR
 DUP LNLEN ?DUP IF
 >R >A BEGIN AC@+ EMIT NEXT ELSE DROP THEN NL> ;
: LIST (n --) \ print contents of BLK n
 BLK@ 16 >R 0 BEGIN (n)
 DUP 1+ DUP 10 < IF SPC> THEN . SPC>
 DUP LNSZ * BLK(+ EMITLN 1+ NEXT DROP ;
: INDEX (b1 b2 --) \ print first line of blocks b1 through b2
 OVER - 1+ >R BEGIN
 DUP . SPC> DUP BLK@ BLK(EMITLN 1+ NEXT DROP ;

B233
: \S BLK) 'IN(! IN('IN> ! ;
:~ (--) IN) 'IN(! ;
: LOAD
 IN> BLKIN> ! ['~ @ LITN] LN< ! BLK@ BLK('IN(! IN('IN> !
 BEGIN RUN1 IN(BLK) = UNTIL IN$ BLKIN> @ 'IN> ! ;
\ >R R> around LOAD is to avoid bad blocks messing PS up
: LOADR OVER - 1+ >R BEGIN
 DUP . SPC> DUP >R LOAD R> 1+ NEXT DROP ;

B234
\ Application loader, to include in boot binary
: ED 1 LOAD 20 24 LOADR ;
: VE ED 4 5 LOADR 25 32 LOADR ;
: ME 4 LOAD 35 39 LOADR ;
: ARCHM 301 LOAD ;
: RXTX 10 15 LOADR ;
: XCOMP 200 LOAD ;

1.14 RX/TX subsystem: 235 169

1.14 RX/TX subsystem: 235

B235
\ RX/TX subsystem. See doc/rxtx
RXTX_MEM CONSTANT _emit
RXTX_MEM 2 + CONSTANT _key
: RX< BEGIN RX<? UNTIL ;
: RX<< 0 BEGIN DROP RX<? NOT UNTIL ;
: TX['EMIT @ _emit ! ['] TX> 'EMIT ! ;
:]TX _emit @ 'EMIT ! ;
: RX['KEY? @ _key ! ['] RX<? 'KEY? ! ;
:]RX _key @ 'KEY? ! ;

1.15 Grid subsystem: 240-241

B240
\ Grid subsystem. See doc/grid.txt. Load range: B240-B241
GRID_MEM DUP CONSTANT 'XYPOS *VALUE XYPOS
?: CURSOR! 2DROP ;
: XYPOS! COLS LINES * MOD DUP XYPOS CURSOR! 'XYPOS ! ;
: AT-XY (x y --) COLS * + XYPOS! ;
?: NEWLN (oldln -- newln)
 1+ LINES MOD DUP COLS * (pos)
 COLS >R BEGIN SPC OVER CELL! 1+ NEXT DROP ;
?: CELLS! (a pos u --)
 ?DUP IF >R SWAP >A BEGIN (pos) AC@+ OVER CELL! 1+ NEXT
 ELSE DROP THEN DROP ;

B241
:~ (line feed) XYPOS COLS / NEWLN COLS * XYPOS! ;
?: (emit)
 DUP BS? IF
 DROP SPC XYPOS TUCK CELL! (pos) 1- XYPOS! EXIT THEN
 DUP CR = IF DROP SPC XYPOS CELL! ~ EXIT THEN
 DUP SPC < IF DROP EXIT THEN
 XYPOS CELL!
 XYPOS 1+ DUP COLS MOD IF XYPOS! ELSE DROP ~ THEN ;
: GRID$ 0 'XYPOS ! ;

170 1 Architecture independent

1.16 PS/2 keyboard subsystem: 245-248

B245
PS/2 keyboard subsystem

Provides (key?) from a driver providing the PS/2 protocol. That
is, for a driver taking care of providing all key codes emanat-
ing from a PS/2 keyboard, this subsystem takes care of mapping
those keystrokes to ASCII characters. This code is designed to
be cross-compiled and loaded with drivers.

Requires PS2_MEM to be defined.

Load range: 246-249

B246
: PS2_SHIFT [PS2_MEM LITN] ; : PS2$ 0 PS2_SHIFT C! ;
\ A list of the values associated with the $80 possible scan
\ codes of the set 2 of the PS/2 keyboard specs. 0 means no
\ value. That value is a character that can be read in (key?)
\ No make code in the PS/2 set 2 reaches $80.
\ TODO: I don't know why, but the key 2 is sent as $1f by 2 of
\ my keyboards. Is it a timing problem on the ATtiny?
CREATE PS2_CODES $80 nC,
0 0 0 0 0 0 0 0 0 0 0 0 0 9 '`' 0
0 0 0 0 0 'q' '1' 0 0 0 'z' 's' 'a' 'w' '2' '2'
0 'c' 'x' 'd' 'e' '4' '3' 0 0 32 'v' 'f' 't' 'r' '5' 0
0 'n' 'b' 'h' 'g' 'y' '6' 0 0 0 'm' 'j' 'u' '7' '8' 0
0 ',' 'k' 'i' 'o' '0' '9' 0 0 '.' '/' 'l' ';' 'p' '-' 0
0 0 ''' 0 '[' '=' 0 0 0 0 13 ']' 0 '\' 0 0
0 0 0 0 0 0 8 0 0 '1' 0 '4' '7' 0 0 0
'0' '.' '2' '5' '6' '8' 27 0 0 0 '3' 0 0 '9' 0 0

B247
(Same values, but shifted) $80 nC,
0 0 0 0 0 0 0 0 0 0 0 0 0 9 '~' 0
0 0 0 0 0 'Q' '!' 0 0 0 'Z' 'S' 'A' 'W' '@' '@'
0 'C' 'X' 'D' 'E' '$' '#' 0 0 32 'V' 'F' 'T' 'R' '%' 0
0 'N' 'B' 'H' 'G' 'Y' '^' 0 0 0 'M' 'J' 'U' '&' '*' 0
0 '<' 'K' 'I' 'O' ')' '(' 0 0 '>' '?' 'L' ':' 'P' '_' 0
0 0 '"' 0 '{' '+' 0 0 0 0 13 '}' 0 '|' 0 0
0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 27 0 0 0 0 0 0 0 0 0

1.16 PS/2 keyboard subsystem: 245-248 171

B248
: _shift? (kc -- f) DUP $12 = SWAP $59 = OR ;
: (key?) (-- c? f)
 (ps2kc) DUP NOT IF EXIT THEN (kc)
 DUP $e0 (extended) = IF (ignore) DROP 0 EXIT THEN
 DUP $f0 (break) = IF DROP ()
 (get next kc and see if it's a shift)
 BEGIN (ps2kc) ?DUP UNTIL (kc)
 _shift? IF (drop shift) 0 PS2_SHIFT C! THEN
 (whether we had a shift or not, we return the next)
 0 EXIT THEN
 DUP $7f > IF DROP 0 EXIT THEN
 DUP _shift? IF DROP 1 PS2_SHIFT C! 0 EXIT THEN
 (ah, finally, we have a gentle run-of-the-mill KC)
 PS2_CODES PS2_SHIFT C@ IF $80 + THEN + C@ (c, maybe 0)
 ?DUP (c? f) ;

1.17 SD Card subsystem: 250-258

B250
\ SD Card subsystem Load range: B250-B258
SDC_MEM CONSTANT SDC_SDHC
: _idle (-- n) $ff (spix) ;

(spix $ff until the response is something else than $ff
 for a maximum of 20 times. Returns $ff if no response.)
: _wait (-- n)
 0 (dummy) 20 >R BEGIN
 DROP _idle DUP $ff = NOT IF LEAVE THEN NEXT ;

(adjust block for LBA for SD/SDHC)
: _badj (arg1 arg2 -- arg1 arg2)
 SDC_SDHC @ IF 0 SWAP ELSE DUP 128 / SWAP <<8 << THEN ;

B251
(The opposite of sdcWaitResp: we wait until response is $ff.
 After a successful read or write operation, the card will be
 busy for a while. We need to give it time before interacting
 with it again. Technically, we could continue processing on
 our side while the card it busy, and maybe we will one day,
 but at the moment, I'm having random write errors if I don't
 do this right after a write, so I prefer to stay cautious
 for now.)
: _ready (--) BEGIN _idle $ff = UNTIL ;

172 1 Architecture independent

B252
(Computes n into crc c with polynomial $09
 Note that the result is "left aligned", that is, that 8th
 bit to the "right" is insignificant (will be stop bit).)
: _crc7 (c n -- c)
 XOR 8 >R BEGIN (c)
 << (c<<1) DUP >>8 IF
 (MSB was set, apply polynomial)
 <<8 >>8 $12 XOR ($09 << 1, we apply CRC on high bits)
 THEN NEXT ;
(send-and-crc7)
: _s+crc (n c -- c) SWAP DUP (spix) DROP _crc7 ;

B253
(cmd arg1 arg2 -- resp)
(Sends a command to the SD card, along with arguments and
 specified CRC fields. (CRC is only needed in initial commands
 though). This does *not* handle CS. You have to
 select/deselect the card outside this routine.)
: _cmd
 _wait DROP ROT (a1 a2 cmd)
 0 _s+crc (a1 a2 crc)
 ROT L|M ROT (a2 h l crc)
 _s+crc _s+crc (a2 crc)
 SWAP L|M ROT (h l crc)
 _s+crc _s+crc (crc)
 1 OR (ensure stop bit)
 (spix) DROP (send CRC)
 _wait (wait for a valid response...) ;

B254
(cmd arg1 arg2 -- r)
(Send a command that expects a R1 response, handling CS.)
: SDCMDR1 [SDC_DEVID LITN] (spie) _cmd 0 (spie) ;

(cmd arg1 arg2 -- r arg1 arg2)
(Send a command that expects a R7 response, handling CS. A R7
 is a R1 followed by 4 bytes. arg1 contains bytes 0:1, arg2
 has 2:3)
: SDCMDR7
 [SDC_DEVID LITN] (spie)
 _cmd (r)
 _idle <<8 _idle + (r arg1)
 _idle <<8 _idle + (r arg1 arg2)
 0 (spie) ;
: _rdsdhc (--) $7A (CMD58) 0 0 SDCMDR7 DROP $4000
 AND SDC_SDHC ! DROP ;

1.17 SD Card subsystem: 250-258 173

B255
: _err 0 (spie) LIT" SDerr" STYPE ABORT ;

(Tight definition ahead, pre-comment.

 Initialize a SD card. This should be called at least 1ms
 after the powering up of the card. We begin by waking up the
 SD card. After power up, a SD card has to receive at least
 74 dummy clocks with CS and DI high. We send 80.
 Then send cmd0 for a maximum of 10 times, success is when
 we get $01. Then comes the CMD8. We send it with a $01aa
 argument and expect a $01aa argument back, along with a
 $01 R1 response. After that, we need to repeatedly run
 CMD55+CMD41 ($40000000) until the card goes out of idle
 mode, that is, when it stops sending us $01 response and
 send us $00 instead. Any other response means that
 initialization failed.)

B256
: SDC$
 10 >R BEGIN _idle DROP NEXT
 0 (dummy) 10 >R BEGIN (r)
 DROP $40 0 0 SDCMDR1 (CMD0)
 1 = DUP IF LEAVE THEN
 NEXT NOT IF _err THEN
 $48 0 $1aa (CMD8) SDCMDR7 (r arg1 arg2)
 (expected 1 0 $1aa)
 $1aa = ROT (arg1 f r) 1 = AND SWAP (f&f arg1)
 NOT (0 expected) AND (f&f&f) NOT IF _err THEN
 BEGIN
 $77 0 0 SDCMDR1 (CMD55)
 1 = NOT IF _err THEN
 $69 $4000 0 SDCMDR1 (CMD41)
 DUP 1 > IF _err THEN
 NOT UNTIL _rdsdhc ; (out of idle mode, success!)

B257
:~ (dstaddr blkno --)
 [SDC_DEVID LITN] (spie)
 $51 (CMD17) SWAP _badj (a cmd arg1 arg2) _cmd IF _err THEN
 _wait $fe = NOT IF _err THEN
 >A 512 >R 0 BEGIN (crc1)
 _idle (crc1 b) DUP AC!+ (crc1 b) CRC16 NEXT (crc1)
 _idle <<8 _idle + (crc1 crc2)
 _wait DROP 0 (spie) = NOT IF _err THEN ;
: SDC@ (blkno blk(--)
 SWAP << (2x) 2DUP (a b a b) ~
 (a b) 1+ SWAP 512 + SWAP ~ ;

174 1 Architecture independent

B258
:~ (srcaddr blkno --)
 [SDC_DEVID LITN] (spie)
 $58 (CMD24) SWAP _badj (a cmd arg1 arg2) _cmd IF _err THEN
 _idle DROP $fe (spix) DROP
 >A 512 >R 0 BEGIN (crc)
 AC@+ (crc b) DUP (spix) DROP CRC16 NEXT (crc)
 DUP >>8 (crc msb) (spix) DROP (spix) DROP
 _wait DROP _ready 0 (spie) ;
: SDC! (blkno blk(--)
 SWAP << (2x) 2DUP (a b a b) ~
 (a b) 1+ SWAP 512 + SWAP ~ ;

1.18 Fonts: 260-276

B260
Fonts

Fonts are kept in "source" form in the following blocks and
then compiled to binary bitmasks by the following code. In
source form, fonts are a simple sequence of '.' and 'X'. '.'
means empty, 'X' means filled. Glyphs are entered one after the
other, starting at $21 and ending at $7e. To be space
efficient in blocks, we align glyphs horizontally in the blocks
to fit as many character as we can. For example, a 5x7 font
would mean that we would have 12x2 glyphs per block.

261 Font compiler 265 3x5 font
267 5x7 font 271 7x7 font

B261
\ Converts "dot-X" fonts to binary "glyph rows". One byte for
\ each row. In a 5x7 font, each glyph thus use 7 bytes.
\ Resulting bytes are aligned to the left of the byte.
\ Therefore, for a 5-bit wide char, "X.X.X" translates to
\ 10101000. Left-aligned bytes are easier to work with when
\ compositing glyphs.

1.18 Fonts: 260-276 175

B262
2 VALUES _w _h
: _g (given a top-left of dot-X in BLK(, spit H bin lines)
 DUP >A _h >R BEGIN _w >R 0 BEGIN (a r)
 << AC@+ 'X' = IF 1+ THEN NEXT
 8 _w - LSHIFT C, 64 + DUP >A NEXT DROP ;
: _l (a u -- a, spit a line of u glyphs)
 >R DUP BEGIN (a) DUP _g _w + NEXT DROP ;

B263
: CPFNT3x5 3 [TO] _w 5 [TO] _h
 _h ALLOT0 (space char)
 265 BLK@ BLK(21 _l 320 + 21 _l 320 + 21 _l DROP (63)
 266 BLK@ BLK(21 _l 320 + 10 _l DROP (94!) ;
: CPFNT5x7 5 [TO] _w 7 [TO] _h
 _h ALLOT0 (space char)
 3 >R 267 BEGIN (b)
 DUP BLK@ BLK(12 _l 448 + 12 _l DROP 1+ NEXT (72)
 (270) BLK@ BLK(12 _l 448 + 10 _l DROP (94!) ;
: CPFNT7x7 7 [TO] _w 7 [TO] _h
 _h ALLOT0 (space char)
 5 >R 271 BEGIN (b)
 DUP BLK@ BLK(9 _l 448 + 9 _l DROP 1+ NEXT (90)
 (276) BLK@ BLK(4 _l DROP (94!) ;

B265
.X.X.XX.X.XXX...X..X...XX...X...............X.X..X.XX.XX.X.XXXX
.X.X.XXXXXX...XX.X.X..X..X.XXX.X............XX.XXX...X..XX.XX..
.X........XX.X..X.....X..X..X.XXX...XXX....X.X.X.X..X.XX.XXXXX.
......XXXXX.X..X.X....X..X.X.X.X..X.......X..X.X.X.X....X..X..X
.X....X.X.X...X.XX.....XX........X......X.X...X.XXXXXXXX...XXX.
.XXXXXXXXXXX........X...X..XX..X..X.XX..XXXX.XXXXXX.XXX.XXXXXXX
X....XX.XX.X.X..X..X.XXX.X...XXXXX.XX.XX..X.XX..X..X..X.X.X...X
XXX.X.XXXXXX......X.......X.X.XXXXXXXX.X..X.XXX.XX.X.XXXX.X...X
X.XX..X.X..X.X..X..X.XXX.X....X..X.XX.XX..X.XX..X..X.XX.X.X...X
XXXX..XXXXX....X....X...X...X..XXX.XXX..XXXX.XXXX...XXX.XXXXXX.
X.XX..X.XXX.XXXXX.XXXXX..XXXXXX.XX.XX.XX.XX.XXXXXXXX..XXX.X....
XX.X..XXXX.XX.XX.XX.XX.XX...X.X.XX.XX.XX.XX.X..XX..X....XX.X...
X..X..XXXX.XX.XXX.X.XXX..X..X.X.XX.XXXX.X..X..X.X...X...X......
XX.X..X.XX.XX.XX..XXXX.X..X.X.X.XX.XXXXX.X.X.X..X....X..X......
X.XXXXX.XX.XXXXX...XXX.XXX..X.XXX.X.X.XX.X.X.XXXXXX..XXXX...XXX
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_

176 1 Architecture independent

B266
X.....X.......X....XX...X...X...XX..XX.......................X.
.X.XX.X...XX..X.X.X...X.X........X.X.X.X.XXX..X.XX..XX.XX.XXXXX
.....XXX.X...XXX.XXX.X.XXX..X...XXX..X.XXXX.XX.XX.XX.XX..XX..X.
...XXXX.XX..X.XXX.X...XXX.X.X...XX.X.X.X.XX.XX.XXX..XXX....X.X.
...XXXXX..XX.XX.XXX..XX.X.X.X.XX.X.X.XXX.XX.X.X.X....XX..XX..XX
...................XX.X.XX.....................................
X.XX.XX.XX.XX.XXXX.X..X..X..XX
X.XX.XX.X.X..X..XXX...X...XXX.
X.XX.XXXX.X..X.XX..X..X..X....
XXX.X.X.XX.X.X.XXX.XX.X.XX....
`abcdefghijklmnopqrstuvwxyz{|}~

B267
..X...X.X........X..............X....X....X.................
..X...X.X..X.X..XXXXX...X.XX....X...X......X.X.X.X..X.......
..X.......XXXXXX.......X.X..X......X........X.XXX...X.......
..X........X.X..XXX...X...XX.......X........XXXXXXXXXXX.....
..........XXXXX....X.X....XX.X.....X........X.XXX...X.......
..X........X.X.XXXX.X...XX..X.......X......X.X.X.X..X.....X.
..X..............X.......XXX.X.......X....X..............X..
................XXX...XX..XXX..XXX...XX.XXXXX.XXX.XXXXX.XXX.
..............XX...X.X.X.X...XX...X.X.X.X....X........XX...X
.............X.X..XX...X.....X....XX..X.XXXX.X........XX...X
XXXXX.......X..X.X.X...X....X...XX.XXXXX....XXXXX....X..XXX.
...........X...XX..X...X...X......X...X.....XX...X..X..X...X
......XX..X....X...X...X..X...X...X...X.X...XX...X.X...X...X
......XX........XXX..XXXXXXXXX.XXX....X..XXX..XXX.X.....XXX.
!"#$%&'()*+,-./012345678

B268
.XXX...............X.....X.....XXX..XXX..XXX.XXXX..XXX.XXXX.
X...X..X....X....XX.......XX..X...XX...XX...XX...XX...XX...X
X...X..X....X...XX..XXXXX..XX.....XX..XXX...XX...XX....X...X
.XXX...........X.............X...X.X..XXXXXXXXXXX.X....X...X
....X..X....X...XX..XXXXX..XX...X..X....X...XX...XX....X...X
....X..X...X.....XX.......XX.......X...XX...XX...XX...XX...X
.XXX...............X.....X......X...XXX.X...XXXXX..XXX.XXXX.
XXXXXXXXXX.XXX.X...X.XXX....XXX..X.X....X...XX...X.XXX.XXXX.
X....X....X...XX...X..X......XX.X..X....XX.XXXX..XX...XX...X
X....X....X....X...X..X......XXX...X....X.X.XXX..XX...XX...X
XXXX.XXXX.X..XXXXXXX..X......XX....X....X...XX.X.XX...XXXXX.
X....X....X...XX...X..X......XXX...X....X...XX..XXX...XX....
X....X....X...XX...X..X..X...XX.X..X....X...XX..XXX...XX....
XXXXXX.....XXX.X...X.XXX..XXX.X..X.XXXXXX...XX...X.XXX.X....
9:;<=>?@ABCDEFGHIJKLMNOP

1.18 Fonts: 260-276 177

B269
.XXX.XXXX..XXX.XXXXXX...XX...XX...XX...XX...XXXXXXXXX.......
X...XX...XX...X..X..X...XX...XX...XX...XX...XX...XX....X....
X...XX...XX......X..X...XX...XX...X.X.X..X.X....X.X.....X...
X...XXXXX..XXX...X..X...XX...XX...X..X....X....X..X......X..
X.X.XX.X......X..X..X...XX...XX.X.X.X.X...X...X...X.......X.
X..XXX..X.X...X..X..X...X.X.X.X.X.XX...X..X..X...XX........X
.XXXXX...X.XXX...X...XXX...X...X.X.X...X..X..XXXXXXXX.......
..XXX..X.........X..
....X.X.X.........X...
....XX...X...........XXX.X.....XXX.....X.XXX..XX....XXXX....
....X...................XX....X...X....XX...XX..X..X..XX....
....X................XXXXXXX..X......XXXXXXXXX......XXXXXX..
....X...............X...XX..X.X...X.X..XX....XXX......XX..X.
..XXX.....XXXXX......XXXXXXX...XXX...XXX.XXXXX......XX.X..X.
QRSTUVWXYZ[\]^_`abcdefgh

B270
..
..
..X......XX..X..XX...X.X.XXX...XXX.XXX....XXXX.XX..XXX..X...
..........X.X....X..X.X.XX..X.X...XX..X..X..XXX...X....XXX..
..X......XXX.....X..X...XX...XX...XXXX....XXXX.....XXX..X...
..X...X..XX.X....X..X...XX...XX...XX........XX........X.X...
..X....XX.X..X...XX.X...XX...X.XXX.X........XX.....XXX...XX.
................................XX...X...XX.......
...............................X.....X.....X......
X...XX...XX...XX...XX...XXXXXX.X.....X.....X..X.X.
X...XX...XX...X.X.X..X.X....X.X......X......XX.X..
X...XX...XX...X..X....X....X...X.....X.....X......
X...X.X.X.X.X.X.X.X..X....X....X.....X.....X......
.XXX...X...X.X.X...XX....XXXXX..XX...X...XX.......
ijklmnopqrstuvwxyz{|}~

B271
..XX....XX.XX..XX.XX....XX..XX......XXX......XX.....XX...XX....
..XX....XX.XX..XX.XX..XXXXXXXX..XX.XX.XX....XX.....XX.....XX...
..XX....XX.XX.XXXXXXXXX.X......XX..XX.XX...XX.....XX.......XX..
..XX...........XX.XX..XXXXX...XX....XXX...........XX.......XX..
..XX..........XXXXXXX...X.XX.XX....XX.XX.X........XX.......XX..
...............XX.XX.XXXXXX.XX..XX.XX..XX..........XX.....XX...
..XX...........XX.XX...XX.......XX..XXX.XX..........XX...XX....
...XXXX....XX....XXXX..
..XX.....XX............................XX.XX..XX..XXX...XX..XX.
XXXXXX...XX...........................XX..XX.XXX...XX.......XX.
.XXXX..XXXXXX........XXXXXX..........XX...XXXXXX...XX......XX..
XXXXXX...XX.........................XX....XXX.XX...XX.....XX...
..XX.....XX.....XX............XX...XX.....XX..XX...XX....XX....
...............XX.............XX...........XXXX..XXXXXX.XXXXXX.
!"#$%&'()*+,-./012

178 1 Architecture independent

B272
.XXXX.....XX..XXXXXX...XXX..XXXXXX..XXXX...XXXX................
XX..XX...XXX..XX......XX........XX.XX..XX.XX..XX...............
....XX..XXXX..XXXXX..XX........XX..XX..XX.XX..XX...XX.....XX...
..XXX..XX.XX......XX.XXXXX....XX....XXXX...XXXXX...XX.....XX...
....XX.XXXXXX.....XX.XX..XX..XX....XX..XX.....XX...............
XX..XX....XX..XX..XX.XX..XX..XX....XX..XX....XX....XX.....XX...
.XXXX.....XX...XXXX...XXXX...XX.....XXXX...XXX.....XX....XX....
...XX.........XX......XXXX...XXXX...XXXX..XXXXX...XXXX..XXXX...
..XX...........XX....XX..XX.XX..XX.XX..XX.XX..XX.XX..XX.XX.XX..
.XX....XXXXXX...XX......XX..XX.XXX.XX..XX.XX..XX.XX.....XX..XX.
XX...............XX....XX...XX.X.X.XXXXXX.XXXXX..XX.....XX..XX.
.XX....XXXXXX...XX.....XX...XX.XXX.XX..XX.XX..XX.XX.....XX..XX.
..XX...........XX...........XX.....XX..XX.XX..XX.XX..XX.XX.XX..
...XX.........XX.......XX....XXXX..XX..XX.XXXXX...XXXX..XXXX...
3456789:;<=>?@ABCD

B273
XXXXXX.XXXXXX..XXXX..XX..XX.XXXXXX..XXXXX.XX..XX.XX.....XX...XX
XX.....XX.....XX..XX.XX..XX...XX......XX..XX.XX..XX.....XXX.XXX
XX.....XX.....XX.....XX..XX...XX......XX..XXXX...XX.....XXXXXXX
XXXXX..XXXXX..XX.XXX.XXXXXX...XX......XX..XXX....XX.....XX.X.XX
XX.....XX.....XX..XX.XX..XX...XX......XX..XXXX...XX.....XX.X.XX
XX.....XX.....XX..XX.XX..XX...XX...XX.XX..XX.XX..XX.....XX...XX
XXXXXX.XX......XXXX..XX..XX.XXXXXX..XXX...XX..XX.XXXXXX.XX...XX
XX..XX..XXXX..XXXXX...XXXX..XXXXX...XXXX..XXXXXX.XX..XX.XX..XX.
XX..XX.XX..XX.XX..XX.XX..XX.XX..XX.XX..XX...XX...XX..XX.XX..XX.
XXX.XX.XX..XX.XX..XX.XX..XX.XX..XX.XX.......XX...XX..XX.XX..XX.
XXXXXX.XX..XX.XXXXX..XX..XX.XXXXX...XXXX....XX...XX..XX.XX..XX.
XX.XXX.XX..XX.XX.....XX.X.X.XX.XX......XX...XX...XX..XX.XX..XX.
XX..XX.XX..XX.XX.....XX.XX..XX..XX.XX..XX...XX...XX..XX..XXXX..
XX..XX..XXXX..XX......XX.XX.XX..XX..XXXX....XX....XXXX....XX...
EFGHIJKLMNOPQRSTUVWXYZ[\]^_

B274
XX...XXXX..XX.XX..XX.XXXXXX.XXXXX.........XXXXX....XX..........
XX...XXXX..XX.XX..XX.....XX.XX.....XX........XX...XXXX.........
XX.X.XX.XXXX..XX..XX....XX..XX......XX.......XX..XX..XX........
XX.X.XX..XX....XXXX....XX...XX.......XX......XX..X....X........
XXXXXXX.XXXX....XX....XX....XX........XX.....XX................
XXX.XXXXX..XX...XX...XX.....XX.........XX....XX................
XX...XXXX..XX...XX...XXXXXX.XXXXX.........XXXXX.........XXXXXXX
.XX...........XX................XX..........XXX.........XX.....
..XX..........XX................XX.........XX.....XXXX..XX.....
...XX...XXXX..XXXXX...XXXX...XXXXX..XXXX...XX....XX..XX.XXXXX..
...........XX.XX..XX.XX..XX.XX..XX.XX..XX.XXXXX..XX..XX.XX..XX.
........XXXXX.XX..XX.XX.....XX..XX.XXXXXX..XX.....XXXXX.XX..XX.
.......XX..XX.XX..XX.XX..XX.XX..XX.XX......XX........XX.XX..XX.
........XXXXX.XXXXX...XXXX...XXXXX..XXXX...XX.....XXX...XX..XX.
WXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

1.18 Fonts: 260-276 179

B275
..XX.....XX...XX......XXX......................................
..............XX.......XX......................................
.XXX....XXX...XX..XX...XX....XX.XX.XXXXX...XXXX..XXXXX...XXXXX.
..XX.....XX...XX.XX....XX...XXXXXXXXX..XX.XX..XX.XX..XX.XX..XX.
..XX.....XX...XXXX.....XX...XX.X.XXXX..XX.XX..XX.XX..XX.XX..XX.
..XX.....XX...XX.XX....XX...XX.X.XXXX..XX.XX..XX.XXXXX...XXXXX.
.XXXX..XX.....XX..XX..XXXX..XX...XXXX..XX..XXXX..XX.........XX.
...............XX..
...............XX..
XX.XX...XXXXX.XXXXX..XX..XX.XX..XX.XX...XXXX..XX.XX..XX.XXXXXX.
XXX.XX.XX......XX....XX..XX.XX..XX.XX.X.XX.XXXX..XX..XX....XX..
XX......XXXX...XX....XX..XX.XX..XX.XX.X.XX..XX...XX..XX...XX...
XX.........XX..XX....XX..XX..XXXX..XXXXXXX.XXXX...XXXXX..XX....
XX.....XXXXX....XXX...XXXXX...XX....XX.XX.XX..XX.....XX.XXXXXX.
ijklmnopqrstuvwxyz{|}~

B276
...XX....XX...XX......XX...X
..XX.....XX....XX....XX.X.XX
..XX.....XX....XX....X...XX.
XXX......XX.....XXX.........
..XX.....XX....XX...........
..XX.....XX....XX...........
...XX....XX...XX............
{|}~

1.19 Automated tests: 290-296

B290
\ Automated tests. "1 LOAD 290 296 LOADR" to run.
\ "#" means "assert". We ABORT on failure.
: fail SPC> ABORT" failed" ;
: # IF SPC> ." pass" NL> ELSE fail THEN ;
: #eq 2DUP SWAP . SPC> '=' EMIT SPC> . '?' EMIT = # ;

180 1 Architecture independent

B291
\ Arithmetics
48 13 + 61 #eq
48 13 - 35 #eq
48 13 * 624 #eq
48 13 / 3 #eq
48 13 MOD 9 #eq
5 3 LSHIFT 40 #eq
155 5 RSHIFT 4 #eq

B292
\ Comparisons
$22 $8065 < #
-1 0 > #
-1 0< #

B293
\ Memory
42 C, 43 C, 44 C,
HERE 3 - HERE 3 MOVE
HERE C@ 42 #eq HERE 1+ C@ 43 #eq HERE 2 + C@ 44 #eq
HERE HERE 1+ 3 MOVE (demonstrate MOVE's problem)
HERE 1+ C@ 42 #eq HERE 2 + C@ 42 #eq HERE 3 + C@ 42 #eq
HERE 3 - HERE 3 MOVE
HERE HERE 1+ 3 MOVE- (see? better)
HERE 1+ C@ 42 #eq HERE 2 + C@ 43 #eq HERE 3 + C@ 44 #eq

HERE (ref)
HERE 3 - 3 MOVE,
(ref) HERE 3 - #eq
HERE 3 - C@ 42 #eq HERE 2 - C@ 43 #eq HERE 1- C@ 44 #eq

1.19 Automated tests: 290-296 181

B294
\ Parse
'b' $62 #eq

B295
\ Stack
42 43 44 ROT
42 #eq 44 #eq 43 #eq
42 43 44 ROT>
43 #eq 42 #eq 44 #eq

B296
\ CRC
$0000 $00 CRC16 $0000 #eq
$0000 $01 CRC16 $1021 #eq
$5678 $34 CRC16 $34e4 #eq

182 2 Z80

2 Z80

2.1 Architecture index: 300

B300
Z80 MASTER INDEX

301 Z80 boot code 310 Z80 HAL
320 Z80 assembler
330 AT28 EEPROM 332 SPI relay
335 TMS9918
340 MC6850 driver 345 Zilog SIO driver
350 Sega Master System VDP 355 SMS PAD
360 SMS KBD 367 SMS SPI relay
368 SMS Ports
370 TI-84+ LCD 375 TI-84+ Keyboard
380 TRS-80 4P drivers
395 Dan SBC drivers 410 Virgil's workspace

2.2 Z80 boot code: 301-314

B301
\ Z80 port's Macros and constants. See doc/code/z80.txt
: Z80A 320 328 LOADR 7 LOAD (Flow words) ;
: Z80C 302 314 LOADR ;
: TRS804PM 380 LOAD ;
\ see comment at TICKS' definition
\ 7.373MHz target: 737t. outer: 37t inner: 16t
\ tickfactor = (737 - 37) / 16
44 CONSTANT tickfactor

2.2 Z80 boot code: 301-314 183

B302
\ Z80 port, core routines
FJR JR, TO L1 $10 OALLOT LSET lblxt (RST 10)
 IX INCd, IX INCd, 0 IX+ E LDIXYr, 1 IX+ D LDIXYr,
 HL POP, LDDE(HL), HL INCd, EXDEHL, JP(HL), \ 17 bytes
$28 OALLOT LSET lblcell (RST 28)
 HL POP, BC PUSH, HL>BC, FJR JR, TO L2 (next) $30 OALLOT
0 JP, (RST 30) $38 OALLOT
0 JP, (RST 38) $66 OALLOT RETN,
L1 FMARK
 DI, SP PS_ADDR LDdi, IX RS_ADDR LDdi,
 BIN($04 (BOOT) + LDHL(i), JP(HL),
LSET lblval HL POP, BC PUSH, LDBC(HL), \ to lblnext
LSET lblnext L2 FMARK
 EXDEHL, LSET L1 (EXIT) LDDE(HL), HL INCd, EXDEHL, JP(HL),
LSET lbldoes HL POP, BC PUSH, HL>BC, BC INCd, BC INCd, LDHL(HL),
 JP(HL),

B303
\ Z80 port, EXIT QUIT ABORT BYE RCNT SCNT
CODE EXIT (put new IP in HL instead of DE for speed)
 L 0 IX+ LDrIXY, H 1 IX+ LDrIXY, IX DECd, IX DECd, L1 JP,
CODE QUIT LSET L1 (used in ABORT)
IX RS_ADDR LDdi, BIN($0a (main) + LDHL(i), JP(HL),
CODE ABORT SP PS_ADDR LDdi, L1 BR JR,
CODE BYE HALT,
CODE RCNT BC PUSH, IX PUSH, HL POP, BC RS_ADDR LDdi,
 BC SUBHLd, HL>BC, ;CODE
CODE SCNT HL 0 LDdi, SP ADDHLd, BC PUSH, HL>BC, HL PS_ADDR LDdi,
 BC SUBHLd, HL>BC, ;CODE

B304
\ Z80 port, TICKS
\ The word below is designed to wait the proper 100us per tick
\ at 500kHz when tickfactor is 1. If the CPU runs faster,
\ tickfactor has to be adjusted accordingly. "t" in comments
\ below means "T-cycle", which at 500kHz is worth 2us.
CODE TICKS
 \ we pre-dec to compensate for initialization
 BEGIN,
 BC DECd, (6t)
 IFZ, (12t) BC POP, ;CODE THEN,
 A tickfactor LDri, (7t)
 BEGIN, A DECr, (4t) BR JRNZ, (12t)
 BR JR, (12t) (outer: 37t inner: 16t)

184 2 Z80

B305
\ Z80 port, PC! PC@ []= [C]? (im1)
CODE PC! HL POP, L OUT(C)r, BC POP, ;CODE
CODE PC@ C INr(C), B 0 LDri, ;CODE
CODE []= BC PUSH, EXX, (protect DE) BC POP, DE POP, HL POP,
 LSET L1 (loop)
 LDA(DE), DE INCd, CPI,
 IFNZ, EXX, BC 0 LDdi, ;CODE THEN,
 CPE L1 JPc, (BC not zero? loop)
 EXX, BC 1 LDdi, ;CODE
CODE [C]? BCZ, IFZ, BC DECd, HL POP, HL POP, ;CODE THEN,
 BC PUSH, EXX, BC POP, HL POP, DE POP, A E LDrr, D H LDrr,
 E L LDrr, \ HL=a DE=a BC=u A=c
 CPIR, IFZ, DE SUBHLd, HL DECd, ELSE, HL -1 LDdi, THEN,
 HL PUSH, EXX, BC POP, ;CODE
CODE (im1) IM1, EI, ;CODE

B306
\ Z80 port, /MOD *
CODE * HL POP, DE PUSH, EXDEHL, (DE * BC -> HL)
 HL 0 LDdi, A $10 LDri, BEGIN,
 HL ADDHLd, E RL, D RL,
 IFC, BC ADDHLd, THEN,
 A DECr, BR JRNZ,
 HL>BC, DE POP, ;CODE
\ Divides AC by DE. quotient in AC remainder in HL
CODE /MOD BC>HL, BC POP, DE PUSH, EXDEHL,
 A B LDrr, B 16 LDri, HL 0 LDdi, BEGIN,
 SCF, C RL, RLA, HL ADCHLd, DE SBCHLd,
 IFC, DE ADDHLd, C DECr, THEN,
 BR DJNZ,
 DE POP, HL PUSH, B A LDrr, ;CODE

B307
\ Z80 port, FIND
CODE FIND (sa sl -- w? f) HL POP,
 BC ADDHLd, \ HL points to after last char of s
 'N HL LD(i)d, HL SYSVARS $02 (CURRENT) + LDd(i), BEGIN,
 HL DECd, A (HL) LDrr, $7f ANDi, (imm) C CPr, IFZ,
 HL PUSH, DE PUSH, BC PUSH, DE 'N LDd(i),
 HL DECd, HL DECd, HL DECd, \ Skip prev field
 LSET L1 (loop)
 DE DECd, LDA(DE), CPD, IFZ, TO L2 (break!)
 CPE L1 JPc, (BC not zero? loop) L2 FMARK
 BC POP, DE POP, HL POP, THEN,
 IFZ, (match) HL INCd, HL PUSH, BC 1 LDdi, ;CODE THEN,
 \ no match, go to prev and continue
 HL DECd, A (HL) LDrr, HL DECd, L (HL) LDrr, H A LDrr,
 L ORr, IFZ, (end of dict) BC 0 LDdi, ;CODE THEN,
 BR JR,

2.2 Z80 boot code: 301-314 185

B308
\ Z80 port, (b) (n) (br) (?br) (next)
CODE (b) (-- c) BC PUSH, LDA(DE), A>BC, DE INCd, ;CODE
CODE (n) (-- n) BC PUSH,
 EXDEHL, LDBC(HL), HL INCd, EXDEHL, ;CODE
CODE (br) LSET L1 (used in ?br and next)
 LDA(DE), (sign extend A into HL)
 L A LDrr, A ADDr, (sign in carry) A SBCr, (FF if neg)
 H A LDrr, DE ADDHLd, (HL --> new IP) EXDEHL, ;CODE
CODE (?br) BCZ, BC POP, L1 BR JRZ, DE INCd, ;CODE
CODE (next)
 0 IX+ DEC(IXY+), IFNZ,
 A $ff LDri, 0 IX+ CP(IXY+), IFZ, 1 IX+ DEC(IXY+), THEN,
 L1 BR JR, THEN,
 A XORr, 1 IX+ CP(IXY+), L1 BR JRNZ,
 IX DECd, IX DECd, DE INCd, ;CODE

B309
\ Z80 port, >R I C@ @ C! ! 1+ 1- + -
CODE >R IX INCd, IX INCd, 0 IX+ C LDIXYr, 1 IX+ B LDIXYr,
 BC POP, ;CODE
CODE R@ BC PUSH, C 0 IX+ LDrIXY, B 1 IX+ LDrIXY, ;CODE
CODE R~ IX DECd, IX DECd, ;CODE
CODE R> BC PUSH, C 0 IX+ LDrIXY, B 1 IX+ LDrIXY,
 IX DECd, IX DECd, ;CODE
CODE C@ LDA(BC), A>BC, ;CODE
CODE @ BC>HL, LDBC(HL), ;CODE
CODE C! BC>HL, BC POP, (HL) C LDrr, BC POP, ;CODE
CODE ! BC>HL, BC POP,
 (HL) C LDrr, HL INCd, (HL) B LDrr, BC POP, ;CODE
CODE 1+ BC INCd, ;CODE
CODE 1- BC DECd, ;CODE
CODE + HL POP, BC ADDHLd, HL>BC, ;CODE
CODE - HL POP, BC SUBHLd, HL>BC, ;CODE

B310
\ Z80 port, AND OR XOR >> << >>8 <<8
CODE AND HL POP,
 A C LDrr, L ANDr, C A LDrr,
 A B LDrr, H ANDr, B A LDrr, ;CODE
CODE OR HL POP,
 A C LDrr, L ORr, C A LDrr,
 A B LDrr, H ORr, B A LDrr, ;CODE
CODE XOR HL POP,
 A C LDrr, L XORr, C A LDrr,
 A B LDrr, H XORr, B A LDrr, ;CODE
CODE NOT BCZ, BC 0 LDdi, IFZ, C INCr, THEN, ;CODE
CODE >> B SRL, C RR, ;CODE
CODE << C SLA, B RL, ;CODE
CODE >>8 C B LDrr, B 0 LDri, ;CODE
CODE <<8 B C LDrr, C 0 LDri, ;CODE

186 2 Z80

B311
\ Z80 port, ROT ROT> DUP DROP SWAP OVER EXECUTE
CODE ROT (a b c -- b c a) (BC=c)
 HL POP, (b) EX(SP)HL, (a<>b) BC PUSH, (c) HL>BC, ;CODE
CODE ROT> (a b c -- c a b) (BC=c)
 BC>HL, BC POP, (b) EX(SP)HL, (a<>c) HL PUSH, ;CODE
CODE DUP (a -- a a) LSET L1 BC PUSH, ;CODE
CODE ?DUP BCZ, L1 BR JRNZ, ;CODE
CODE DROP (a --) BC POP, ;CODE
CODE SWAP (a b -- b a) HL POP, BC PUSH, HL>BC, ;CODE
CODE OVER (a b -- a b a)
 HL POP, HL PUSH, BC PUSH, HL>BC, ;CODE
CODE EXECUTE BC>HL, BC POP, JP(HL),

B312
\ Z80 port, JMPi! CALLi! i>!
CODE JMPi! (pc a -- len) BC>HL, BC POP,
 A $c3 LDri, LSET L1 (HL) A LDrr, HL INCd,
 (HL) C LDrr, HL INCd, (HL) B LDrr, BC 3 LDdi, ;CODE
CODE CALLi! (pc a -- len) BC>HL, BC POP,
 A B LDrr, A ORr, IFZ, A C LDrr, $c7 ANDi, IFZ, \ RST
 A C LDrr, $c7 ORi, (HL) A LDrr, BC 1 LDdi, ;CODE THEN, THEN,
 (not RST) A $cd LDri, L1 BR JR,
CODE i>! (i a -- len) BC>HL, BC POP,
 A $c5 LDri, (push bc) (HL) A LDrr, HL INCd, A $01 LDri,
 (ld bc,nn) (HL) A LDrr, HL INCd, (HL) C LDrr, HL INCd,
 (HL) B LDrr, BC 4 LDdi, ;CODE

B313
\ Z80 port speedups
CODE TUCK (a b -- b a b) HL POP, BC PUSH, HL PUSH, ;CODE
CODE NIP (a b -- b) HL POP, ;CODE
CODE +! (n a --) BC>HL, LDBC(HL), HL DECd, EX(SP)HL,
 BC ADDHLd, HL>BC, HL POP, (HL) C LDrr, HL INCd, (HL) B LDrr,
 BC POP, ;CODE
CODE A> BC PUSH, IY PUSH, BC POP, ;CODE
CODE >A BC PUSH, IY POP, BC POP, ;CODE
CODE A>R IY PUSH, HL POP,
 IX INCd, IX INCd, 0 IX+ L LDIXYr, 1 IX+ H LDIXYr, ;CODE
CODE R>A L 0 IX+ LDrIXY, H 1 IX+ LDrIXY, IX DECd, IX DECd,
 HL PUSH, IY POP, ;CODE
CODE A+ IY INCd, ;CODE
CODE A- IY DECd, ;CODE
CODE AC@ BC PUSH, C 0 IY+ LDrIXY, B 0 LDri, ;CODE
CODE AC! 0 IY+ C LDIXYr, BC POP, ;CODE

2.2 Z80 boot code: 301-314 187

B314
\ Z80 port speedups
CODE MOVE (src dst u --) HL POP, EXDEHL, EX(SP)HL,
 BCZ, IFNZ, LDIR, THEN, DE POP, BC POP, ;CODE
CODE = HL POP, BC SUBHLd, BC 0 LDdi, IFZ, BC INCd, THEN, ;CODE
CODE < HL POP, BC SUBHLd, BC 0 LDdi, IFC, BC INCd, THEN, ;CODE
CODE CRC16 (c n -- c) BC PUSH, EXX, (protect DE)
 HL POP, (n) DE POP, (c) A L LDrr, D XORr, D A LDrr,
 B 8 LDri, BEGIN,
 E SLA, D RL, IFC, (msb is set, apply polynomial)
 A D LDrr, $10 XORi, D A LDrr,
 A E LDrr, $21 XORi, E A LDrr, THEN,
 BR DJNZ,
 DE PUSH, EXX, (unprotect DE) BC POP, ;CODE

2.3 Z80 assembler: 320-328

B320
\ Z80 Assembler. See doc/asm.txt
21 CONSTS 7 A 0 B 1 C 2 D 3 E 4 H 5 L 6 (HL)
 0 BC 1 DE 2 HL 3 AF 3 SP
 0 CNZ 1 CZ 2 CNC 3 CC 4 CPO 5 CPE 6 CP 7 CM
: <<3 << << << ; : <<4 <<3 << ;
\ As a general rule, IX and IY are equivalent to spitting an
\ extra $dd / $fd and then spit the equivalent of HL
: IX $dd C, HL ; : IY $fd C, HL ;
: IX+ <<8 >>8 $dd C, (HL) ;
: IY+ <<8 >>8 $fd C, (HL) ;
: OPXY DOER , DOES> @ (xyoff opref) EXECUTE C, ;

B321
: OP1 DOER C, DOES> C@ C, ;
$f3 OP1 DI, $fb OP1 EI,
$eb OP1 EXDEHL, $d9 OP1 EXX,
$08 OP1 EXAFAF', $e3 OP1 EX(SP)HL,
$76 OP1 HALT, $e9 OP1 JP(HL),
$12 OP1 LD(DE)A, $1a OP1 LDA(DE),
$02 OP1 LD(BC)A, $0a OP1 LDA(BC),
$00 OP1 NOP, $c9 OP1 RET,
$17 OP1 RLA, $07 OP1 RLCA,
$1f OP1 RRA, $0f OP1 RRCA,
$37 OP1 SCF,

188 2 Z80

B322
: OP1r DOER C, DOES> C@ (r op) SWAP <<3 OR C, ;
$04 OP1r INCr, $05 OP1r DECr,
' INCr, OPXY INC(IXY+), ' DECr, OPXY DEC(IXY+),
\ OP1r also works for conditions
$c0 OP1r RETc,

: OP1r0 DOER C, DOES> C@ (r op) OR C, ;
$80 OP1r0 ADDr, $88 OP1r0 ADCr,
$a0 OP1r0 ANDr, $b8 OP1r0 CPr,
$b0 OP1r0 ORr, $90 OP1r0 SUBr,
$98 OP1r0 SBCr, $a8 OP1r0 XORr,
' ADDr, OPXY ADD(IXY+), ' ADCr, OPXY ADC(IXY+),
' CPr, OPXY CP(IXY+), ' ORr, OPXY OR(IXY+),
' ANDr, OPXY AND(IXY+), ' XORr, OPXY XOR(IXY+),
' SUBr, OPXY SUB(IXY+), ' SBCr, OPXY SBC(IXY+),

B323
: OP1d DOER C, DOES> C@ (d op) SWAP <<4 OR C, ;
$c5 OP1d PUSH, $c1 OP1d POP,
$03 OP1d INCd, $0b OP1d DECd,
$09 OP1d ADDHLd,
: ADDIXd, IX DROP ADDHLd, ; : ADDIXIX, HL ADDIXd, ;
: ADDIYd, IY DROP ADDHLd, ; : ADDIYIY, HL ADDIYd, ;

: LDrr, (rd rr) SWAP <<3 OR $40 OR C, ;
' LDrr, OPXY LDIXYr,
: LDrIXY, (rd ixy+- HL) ROT SWAP LDIXYr, ;
: LDri, (r i) SWAP <<3 $06 OR C, C, ;
: LDdi, (d n) SWAP <<4 $01 OR C, L, ;
: LDd(i), (d i) $ed C, SWAP <<4 $4b OR C, L, ;
: LD(i)d, (i d) $ed C, <<4 $43 OR C, L, ;

B324
: OPED DOER C, DOES> $ed C, C@ C, ;
$a1 OPED CPI, $b1 OPED CPIR, $a9 OPED CPD,
$b9 OPED CPDR, $46 OPED IM0, $56 OPED IM1,
$5e OPED IM2, $a0 OPED LDI, $b0 OPED LDIR,
$a8 OPED LDD, $b8 OPED LDDR, $44 OPED NEG,
$4d OPED RETI, $45 OPED RETN, $a2 OPED INI,
$aa OPED IND, $a3 OPED OUTI,

: OP2i DOER C, DOES> C@ (i op) C, C, ;
$d3 OP2i OUTiA, $db OP2i INAi,
$c6 OP2i ADDi, $ce OP2i ADCi,
$e6 OP2i ANDi, $f6 OP2i ORi, $d6 OP2i SUBi,
$ee OP2i XORi, $fe OP2i CPi,
$18 OP2i JR, $10 OP2i DJNZ, $38 OP2i JRC,
$30 OP2i JRNC, $28 OP2i JRZ, $20 OP2i JRNZ,

2.3 Z80 assembler: 320-328 189

B325
: OP2br DOER C, DOES>
 $cb C, C@ (b r op) ROT <<3 OR OR C, ;
$c0 OP2br SET, $80 OP2br RES, $40 OP2br BIT,
\ bitwise rotation ops have a similar sig
: OProt DOER C, DOES> $cb C, C@ (r op) OR C, ;
$10 OProt RL, $00 OProt RLC, $18 OProt RR,
$08 OProt RRC, $20 OProt SLA, $38 OProt SRL,

\ cell contains both bytes. MSB is spit as-is, LSB is ORed
\ with r.
: OP2r DOER , DOES> @ L|M (r lsb msb) C, SWAP <<3 OR C, ;
$ed41 OP2r OUT(C)r, $ed40 OP2r INr(C),

: OP2d DOER C, DOES> $ed C, C@ (d op) SWAP <<4 OR C, ;
$4a OP2d ADCHLd, $42 OP2d SBCHLd,

B326
: OP3i DOER C, DOES> C@ (i op) C, L, ;
$cd OP3i CALL, $c3 OP3i JP,
$22 OP3i LD(i)HL, $2a OP3i LDHL(i),
$32 OP3i LD(i)A, $3a OP3i LDA(i),

: RST, $c7 OR C, ;
: JP(IX), IX DROP JP(HL), ;
: JP(IY), IY DROP JP(HL), ;
: JPc, SWAP <<3 $c2 OR C, L, ;
: CALLc, SWAP <<3 $c4 OR C, L, ;

B327
\ Macros
: SUBHLd, A ORr, SBCHLd, ; \ clear carry + SBC
: PUSHA, B 0 LDri, C A LDrr, BC PUSH, ;
: HLZ, A H LDrr, L ORr, ;
: DEZ, A D LDrr, E ORr, ;
: BCZ, A B LDrr, C ORr, ;
: LDDE(HL), E (HL) LDrr, HL INCd, D (HL) LDrr, ;
: LDBC(HL), C (HL) LDrr, HL INCd, B (HL) LDrr, ;
: LDHL(HL), A (HL) LDrr, HL INCd, H (HL) LDrr, L A LDrr, ;
: OUTHL, DUP A H LDrr, OUTiA, A L LDrr, OUTiA, ;
: OUTDE, DUP A D LDrr, OUTiA, A E LDrr, OUTiA, ;
: HL>BC, B H LDrr, C L LDrr, ;
: BC>HL, H B LDrr, L C LDrr, ;
: A>BC, C A LDrr, B 0 LDri, ;
: A>HL, L A LDrr, H 0 LDri, ;

190 2 Z80

B328
\ Z80 HAL
ALIAS JP, JMPi, ALIAS JR, JRi,
: JMP(i), LDHL(i), JP(HL), ;
: CALLi, DUP $38 AND OVER = IF RST, ELSE CALL, THEN ;
ALIAS JRZ, JRZi, ALIAS JRNZ, JRNZi,
ALIAS JRC, JRCi, ALIAS JRNC, JRNCi,
: i>, BC PUSH, BC SWAP LDdi, ;
: (i)>, BC PUSH, BC SWAP LDd(i), ;

2.4 AT28 EEPROM: 330

B330
CODE AT28C! (c a --)
 BC>HL, BC POP,
 (HL) C LDrr, A C LDrr, (orig) B C LDrr, (save)
 C (HL) LDrr, (poll) BEGIN,
 A (HL) LDrr, (poll) C CPr, (same as old?)
 C A LDrr, (save old poll, Z preserved)
 BR JRNZ,
\ equal to written? SUB instead of CP to ensure IOERR is NZ
 B SUBr, IFNZ, SYSVARS (IOERR) LD(i)A, THEN, BC POP, ;CODE
: AT28! (n a --) 2DUP AT28C! 1+ SWAP >>8 SWAP AT28C! ;

2.5 SPI relay: 332

B332
(SPI relay driver. See doc/hw/z80/spi.txt)
CODE (spix) (n -- n)
 A C LDrr,
 SPI_DATA OUTiA,
 (wait until xchg is done)
 BEGIN, SPI_CTL INAi, 1 ANDi, BR JRNZ,
 SPI_DATA INAi,
 C A LDrr, ;CODE
CODE (spie) (n --)
 A C LDrr, SPI_CTL OUTiA, BC POP, ;CODE

2.6 TMS9918: 335-337 191

2.6 TMS9918: 335-337

B335
(Z80 driver for TMS9918. Implements grid protocol. Requires
TMS_CTLPORT, TMS_DATAPORT and ~FNT from the Font compiler at
B520. Patterns are at addr $0000, Names are at $3800.
Load range B315-317)
CODE _ctl (a -- sends LSB then MSB)
 A C LDrr, TMS_CTLPORT OUTiA, A B LDrr, TMS_CTLPORT OUTiA,
 BC POP, ;CODE
CODE _data
 A C LDrr, TMS_DATAPORT OUTiA, BC POP, ;CODE

B336
: _zero (x -- send 0 _data x times)
 (x) >R BEGIN 0 _data NEXT ;
(Each row in ~FNT is a row of the glyph and there is 7 of
them. We insert a blank one at the end of those 7.)
: _sfont (a -- a+7, Send font to TMS)
 7 >R BEGIN C@+ _data NEXT (blank row) 0 _data ;
: _sfont^ (a -- a+7, Send inverted font to TMS)
 7 >R BEGIN C@+ $ff XOR _data NEXT (blank row) $ff _data ;
: CELL! (c pos)
 $7800 OR _ctl (tilenum)
 SPC - (glyph) $5f MOD _data ;

B337
: CURSOR! (new old --)
 DUP $3800 OR _ctl [TMS_DATAPORT LITN] PC@
 $7f AND (new old glyph) SWAP $7800 OR _ctl _data
 DUP $3800 OR _ctl [TMS_DATAPORT LITN] PC@
 $80 OR (new glyph) SWAP $7800 OR _ctl _data ;
: COLS 40 ; : LINES 24 ;
: TMS$
 $8100 _ctl (blank screen)
 $7800 _ctl COLS LINES * _zero
 $4000 _ctl $5f >R ~FNT BEGIN _sfont NEXT DROP
 $4400 _ctl $5f >R ~FNT BEGIN _sfont^ NEXT DROP
 $820e _ctl (name table $3800)
 $8400 _ctl (pattern table $0000)
 $87f0 _ctl (colors 0 and 1)
 $8000 _ctl $81d0 _ctl (text mode, display on) ;

192 2 Z80

2.7 MC6850 driver: 340-342

B340
(MC6850 Driver. Load range B320-B322. Requires:
 6850_CTL for control register
 6850_IO for data register.
 CTL numbers used: $16 = no interrupt, 8bit words, 1 stop bit
 64x divide. $56 = RTS high)
CODE 6850>
 BEGIN,
 6850_CTL INAi, $02 ANDi, (are we transmitting?)
 BR JRZ, (yes, loop)
 A C LDrr, 6850_IO OUTiA, BC POP, ;CODE

B341
CODE 6850<? BC PUSH,
 A XORr, (256x) A $16 (RTS lo) LDri, 6850_CTL OUTiA,
 BC 0 LDdi, (pre-push a failure)
 BEGIN, EXAFAF', (preserve cnt)
 6850_CTL INAi, $1 ANDi, (rcv buff full?)
 IFNZ, (full)
 6850_IO INAi, PUSHA, C 1 LDri, A XORr, (end loop)
 ELSE, EXAFAF', (recall cnt) A DECr, THEN,
 BR JRNZ,
 A $56 (RTS hi) LDri, 6850_CTL OUTiA, ;CODE

B342
ALIAS 6850<? RX<? ALIAS 6850<? (key?)
ALIAS 6850> TX> ALIAS 6850> (emit)
: 6850$ $56 (RTS high) [6850_CTL LITN] PC! ;

2.8 Zilog SIO driver: 345-348 193

2.8 Zilog SIO driver: 345-348

B345
(Zilog SIO driver. Load range B325-328. Requires:
 SIOA_CTL for ch A control register SIOA_DATA for data
 SIOB_CTL for ch B control register SIOB_DATA for data)
CODE SIOA<? BC PUSH,
 A XORr, (256x) BC 0 LDdi, (pre-push a failure)
 A 5 (PTR5) LDri, SIOA_CTL OUTiA,
 A $68 (RTS low) LDri, SIOA_CTL OUTiA,
 BEGIN, EXAFAF', (preserve cnt)
 SIOA_CTL INAi, $1 ANDi, (rcv buff full?)
 IFNZ, (full)
 SIOA_DATA INAi, PUSHA, C 1 LDri, A XORr, (end loop)
 ELSE, EXAFAF', (recall cnt) A DECr, THEN,
 BR JRNZ,
 A 5 (PTR5) LDri, SIOA_CTL OUTiA,
 A $6a (RTS high) LDri, SIOA_CTL OUTiA, ;CODE

B346
CODE SIOA>
 BEGIN,
 SIOA_CTL INAi, $04 ANDi, (are we transmitting?)
 BR JRZ, (yes, loop)
 A C LDrr, SIOA_DATA OUTiA, BC POP, ;CODE
CREATE _ (init data) $18 C, (CMD3)
 $24 C, (CMD2/PTR4) $c4 C, (WR4/64x/1stop/nopar)
 $03 C, (PTR3) $c1 C, (WR3/RXen/8char)
 $05 C, (PTR5) $6a C, (WR5/TXen/8char/RTS)
 $21 C, (CMD2/PTR1) 0 C, (WR1/Rx no INT)
: SIOA$ _ >A 9 >R BEGIN AC@+ [SIOA_CTL LITN] PC! NEXT ;

B347
CODE SIOB<? BC PUSH, (copy/paste of SIOA<?)
 A XORr, (256x) BC 0 LDdi, (pre-push a failure)
 A 5 (PTR5) LDri, SIOB_CTL OUTiA,
 A $68 (RTS low) LDri, SIOB_CTL OUTiA,
 BEGIN, EXAFAF', (preserve cnt)
 SIOB_CTL INAi, $1 ANDi, (rcv buff full?)
 IFNZ, (full)
 SIOB_DATA INAi, PUSHA, C 1 LDri, A XORr, (end loop)
 ELSE, EXAFAF', (recall cnt) A DECr, THEN,
 BR JRNZ,
 A 5 (PTR5) LDri, SIOB_CTL OUTiA,
 A $6a (RTS high) LDri, SIOB_CTL OUTiA, ;CODE

194 2 Z80

B348
CODE SIOB>
 BEGIN,
 SIOB_CTL INAi, $04 ANDi, (are we transmitting?)
 BR JRZ, (yes, loop)
 A C LDrr, SIOB_DATA OUTiA, BC POP, ;CODE
: SIOB$ _ >A 9 >R BEGIN AC@+ [SIOB_CTL LITN] PC! NEXT ;

2.9 Sega Master System VDP: 350-352

B350
\ VDP Driver. see doc/hw/sms/vdp.txt. Load range B330-B332.
CREATE _idat
$04 C, $80 C, \ Bit 2: Select mode 4
$00 C, $81 C,
$0f C, $82 C, \ Name table: $3800, *B0 must be 1*
$ff C, $85 C, \ Sprite table: $3f00
$ff C, $86 C, \ sprite use tiles from $2000
$ff C, $87 C, \ Border uses palette $f
$00 C, $88 C, \ BG X scroll
$00 C, $89 C, \ BG Y scroll
$ff C, $8a C, \ Line counter (why have this?)

B351
: _sfont (a -- a+7, Send font to VDP)
 7 >R BEGIN C@+ _data 3 _zero NEXT (blank row) 4 _zero ;
: CELL! (c pos)
 2 * $7800 OR _ctl (c)
 $20 - (glyph) $5f MOD _data ;

2.9 Sega Master System VDP: 350-352 195

B352
: CURSOR! (new old --)
 (unset palette bit in old tile)
 2 * 1+ $7800 OR _ctl 0 _data
 (set palette bit for at specified pos)
 2 * 1+ $7800 OR _ctl $8 _data ;
: VDP$
 9 >R _idat BEGIN DUP @ _ctl 1+ 1+ NEXT DROP
 (blank screen) $7800 _ctl COLS LINES * 2 * _zero
 (palettes)
 $c000 _ctl
 (BG) 1 _zero $3f _data 14 _zero
 (sprite, inverted colors) $3f _data 15 _zero
 $4000 _ctl $5f >R ~FNT BEGIN _sfont NEXT DROP
 (bit 6, enable display, bit 7, ??) $81c0 _ctl ;
: COLS 32 ; : LINES 24 ;

2.10 SMS PAD: 355-358

B355
(SMS pad driver. See doc/hw/z80/sms/pad.txt.
 Load range: 335-338)
: _prevstat [PAD_MEM LITN] ;
: _sel [PAD_MEM 1+ LITN] ;
: _next [PAD_MEM 2 + LITN] ;
: _sel+! (n --) _sel C@ + _sel C! ;
: _status (-- n, see doc)
 1 _THA! (output, high/unselected)
 _D1@ $3f AND (low 6 bits are good)
(Start and A are returned when TH is selected, in bits 5 and
 4. Well get them, left-shift them and integrate them to B.)
 0 _THA! (output, low/selected)
 _D1@ $30 AND << << OR ;

B356
: _chk (c --, check _sel range)
 _sel C@ DUP $7f > IF $20 _sel C! THEN
 $20 < IF $7f _sel C! THEN ;
CREATE _ '0' C, ':' C, 'A' C, '[' C, 'a' C, $ff C,
: _nxtcls
 _sel @ >R _ BEGIN (a R:c) C@+ R@ > UNTIL (a R:c) R~
 1- C@ _sel ! ;

196 2 Z80

B357
: _updsel (-- f, has an action button been pressed?)
 _status _prevstat C@ OVER = IF DROP 0 EXIT THEN
 DUP _prevstat C! (changed, update) (s)
 $01 (UP) OVER AND NOT IF 1 _sel+! THEN
 $02 (DOWN) OVER AND NOT IF -1 _sel+! THEN
 $04 (LEFT) OVER AND NOT IF -5 _sel+! THEN
 $08 (RIGHT) OVER AND NOT IF 5 _sel+! THEN
 $10 (BUTB) OVER AND NOT IF _nxtcls THEN
 (update sel in VDP)
 _chk _sel C@ XYPOS CELL!
 (return whether any of the high 3 bits is low)
 $e0 AND $e0 < ;

B358
: (key?) (-- c? f)
 _next C@ IF _next C@ 0 _next C! 1 EXIT THEN
 _updsel IF
 _prevstat C@
 $20 (BUTC) OVER AND NOT IF DROP _sel C@ 1 EXIT THEN
 $40 (BUTA) AND NOT IF $8 (BS) 1 EXIT THEN
 (If not BUTC or BUTA, it has to be START)
 $d _next C! _sel C@ 1
 ELSE 0 (f) THEN ;
: PAD$ $ff _prevstat C! 'a' _sel C! 0 _next C! ;

2.11 SMS KBD: 360-361

B360
(kbd - implement (ps2kc) for SMS PS/2 adapter)
: (ps2kcA) (for port A)
(Before reading a character, we must first verify that there
is something to read. When the adapter is finished filling its
'164 up, it resets the latch, which output's is connected to
TL. When the '164 is full, TL is low. Port A TL is bit 4)
 _D1@ $10 AND IF 0 EXIT (nothing) THEN
 0 _THA! (Port A TH output, low)
 _D1@ (bit 3:0 go in 3:0) $0f AND (n)
 1 _THA! (Port A TH output, high)
 _D1@ (bit 3:0 go in 7:4) $0f AND << << << << OR (n)
 2 _THA! (TH input) ;

2.11 SMS KBD: 360-361 197

B361
: (ps2kcB) (for port B)
 (Port B TL is bit 2)
 _D2@ $04 AND IF 0 EXIT (nothing) THEN
 0 _THB! (Port B TH output, low)
 _D1@ (bit 7:6 go in 1:0) >> >> >> >> >> >> (n)
 _D2@ (bit 1:0 go in 3:2) $03 AND << << OR (n)
 1 _THB! (Port B TH output, high)
 _D1@ (bit 7:6 go in 5:4) $c0 AND >> >> OR (n)
 _D2@ (bit 1:0 go in 7:6) $03 AND <<8 >> >> OR (n)
 2 _THB! (TH input) ;

2.12 SMS SPI relay: 367

B367
: (spie) DROP ; (always enabled)
CODE (spix) (x -- x, for port B)
 (TR = DATA TH = CLK)
 CPORT_MEM LDA(i), $f3 ANDi, (TR/TH output)
 B 8 LDri, BEGIN,
 $bf ANDi, (TR lo) C RL,
 IFC, $40 ORi, (TR hi) THEN,
 CPORT_CTL OUTiA, (clic!) $80 ORi, (TH hi)
 CPORT_CTL OUTiA, (clac!)
 EXAFAF', CPORT_D1 INAi, (Up Btn is B6) RLA, RLA,
 L RL, EXAFAF',
 $7f ANDi, (TH lo) CPORT_CTL OUTiA, (cloc!)
 BR DJNZ, CPORT_MEM LD(i)A,
 C L LDrr, ;CODE

2.13 SMS Ports: 368-369

B368
\ Routines for interacting with SMS controller ports.
\ Requires CPORT_MEM, CPORT_CTL, CPORT_D1 and CPORT_D2 to be
\ defined. CPORT_MEM is a 1 byte buffer for CPORT_CTL. The last
\ 3 consts will usually be $3f, $dc, $dd.
\ mode -- set TR pin on mode a on:
\ 0= output low 1=output high 2=input
CODE _TRA! (B0 -> B4, B1 -> B0)
 C RR, RLA, RLA, RLA, RLA, B RR, RLA,
 $11 ANDi, C A LDrr, CPORT_MEM LDA(i),
 $ee ANDi, C ORr, CPORT_CTL OUTiA, CPORT_MEM LD(i)A,
 BC POP, ;CODE
CODE _THA! (B0 -> B5, B1 -> B1)
 C RR, RLA, RLA, RLA, RLA, C RR, RLA, RLA,
 $22 ANDi, C A LDrr, CPORT_MEM LDA(i),
 $dd ANDi, C ORr, CPORT_CTL OUTiA, CPORT_MEM LD(i)A,
 BC POP, ;CODE

198 2 Z80

B369
CODE _TRB! (B0 -> B6, B1 -> B2)
 C RR, RLA, RLA, RLA, RLA, C RR, RLA, RLA, RLA,
 $44 ANDi, C A LDrr, CPORT_MEM LDA(i),
 $bb ANDi, C ORr, CPORT_CTL OUTiA, CPORT_MEM LD(i)A,
 BC POP, ;CODE
CODE _THB! (B0 -> B7, B1 -> B3)
 C RR, RLA, RLA, RLA, RLA, C RR, RLA, RLA, RLA, RLA,
 $88 ANDi, C A LDrr, CPORT_MEM LDA(i),
 $77 ANDi, C ORr, CPORT_CTL OUTiA, CPORT_MEM LD(i)A,
 BC POP, ;CODE
CODE _D1@ BC PUSH, CPORT_D1 INAi, C A LDrr, B 0 LDri, ;CODE
CODE _D2@ BC PUSH, CPORT_D2 INAi, C A LDrr, B 0 LDri, ;CODE

2.14 TI-84+ LCD: 370-373

B370
(TI-84+ LCD driver. See doc/hw/z80/ti84/lcd.txt
 Load range: 350-353)
: _mem+ [LCD_MEM LITN] @ + ;
: FNTW 3 ; : FNTH 5 ;
: COLS 96 FNTW 1+ / ; : LINES 64 FNTH 1+ / ;
(Wait until the lcd is ready to receive a command. It's a bit
 weird to implement a waiting routine in asm, but the forth
 version is a bit heavy and we don't want to wait longer than
 we have to.)
CODE _wait
 BEGIN,
 $10 (CMD) INAi,
 RLA, (When 7th bit is clr, we can send a new cmd)
 BR JRC, ;CODE

B371
: LCD_BUF 0 _mem+ ;
: _cmd $10 (CMD) PC! _wait ;
: _data! $11 (DATA) PC! _wait ;
: _data@ $11 (DATA) PC@ _wait ;
: LCDOFF $02 (CMD_DISABLE) _cmd ;
: LCDON $03 (CMD_ENABLE) _cmd ;
: _yinc $07 _cmd ; : _xinc $05 _cmd ;
: _zoff! (off --) $40 + _cmd ;
: _col! (col --) $20 + _cmd ;
: _row! (row --) $80 + _cmd ;
: LCD$
 HERE [LCD_MEM LITN] ! FNTH 2 * ALLOT
 LCDON $01 (8-bit mode) _cmd FNTH 1+ _zoff! ;

2.14 TI-84+ LCD: 370-373 199

B372
: _clrrows (n u -- Clears u rows starting at n)
 >R _row! BEGIN
 _yinc 0 _col! 11 >R BEGIN 0 _data! NEXT
 _xinc 0 _data! NEXT ;
: NEWLN (oldln -- newln)
 1+ DUP 1+ FNTH 1+ * _zoff! (ln)
 DUP FNTH 1+ * FNTH 1+ _clrrows (newln) ;
: LCDCLR 0 64 _clrrows ;

B373
: _atrow! (pos --) COLS / FNTH 1+ * _row! ;
: _tocol (pos -- col off) COLS MOD FNTW 1+ * 8 /MOD ;
: CELL! (c pos --)
 DUP _atrow! DUP _tocol _col! ROT (pos coff c)
 $20 - FNTH * ~FNT + (pos coff a)
 _xinc _data@ DROP
 A> >R LCD_BUF >A FNTH >R BEGIN (pos coff a)
 OVER 8 -^ SWAP C@+ (pos coff 8-coff a+1 c) ROT LSHIFT
 _data@ <<8 OR (pos coff a+1 c)
 DUP A> FNTH + C! >>8 AC!+
 NEXT 2DROP (pos)
 DUP _atrow!
 LCD_BUF >A FNTH >R BEGIN AC@+ _data! NEXT
 DUP _atrow! _tocol NIP 1+ _col!
 FNTH >R BEGIN AC@+ _data! NEXT R> >A ;

2.15 TI-84+ Keyboard: 375-379

B375
\ Requires KBD_MEM, KBD_PORT and nC, from B120.
\ Load range: 355-359

\ gm -- pm, get pressed keys mask for group mask gm
CODE _get
 DI,
 A $ff LDri,
 KBD_PORT OUTiA,
 A C LDrr,
 KBD_PORT OUTiA,
 KBD_PORT INAi,
 EI,
 C A LDrr,
;CODE

200 2 Z80

B376
\ wait until all keys are de-pressed. To avoid repeat keys, we
\ require 64 subsequent polls to indicate all depressed keys.
\ all keys are considered depressed when the 0 group returns
\ $ff.
: _wait 64 BEGIN 0 _get $ff = NOT IF DROP 64 THEN
 1- DUP NOT UNTIL DROP ;
\ digits table. each row represents a group. 0 means unsupported
\ no group 7 because it has no key. $80 = alpha, $81 = 2nd
CREATE _dtbl 7 8 * nC,
 0 0 0 0 0 0 0 0
 $d '+' '-' '*' '/' '^' 0 0
 0 '3' '6' '9' ')' 0 0 0
 '.' '2' '5' '8' '(' 0 0 0
 '0' '1' '4' '7' ',' 0 0 0
 0 0 0 0 0 0 0 $80
 0 0 0 0 0 $81 0 $7f

B377
\ alpha table. same as _dtbl, for when we're in alpha mode.
CREATE _atbl 7 8 * nC,
 0 0 0 0 0 0 0 0
 $d '"' 'W' 'R' 'M' 'H' 0 0
 '?' 0 'V' 'Q' 'L' 'G' 0 0
 ':' 'Z' 'U' 'P' 'K' 'F' 'C' 0
 32 'Y' 'T' 'O' 'J' 'E' 'B' 0
 0 'X' 'S' 'N' 'I' 'D' 'A' $80
 0 0 0 0 0 $81 0 $7f
: _@ [KBD_MEM LITN] C@ ; : _! [KBD_MEM LITN] C! ;
: _2nd@ _@ 1 AND ; : _2nd! _@ $fe AND + _! ;
: _alpha@ _@ 2 AND ; : _alpha! 2 * _@ $fd AND + _! ;
: _alock@ _@ 4 AND ; : _alock^ _@ 4 XOR _! ;

B378
: _gti (-- tindex, that it, index in _dtbl or _atbl)
 7 >R 0 BEGIN (gid)
 1 OVER LSHIFT $ff -^ (gid dmask) _get
 DUP $ff = IF DROP 1+ ELSE R~ 1 >R THEN
 NEXT (gid dmask)
 _wait $ff XOR (dpos) 0 (dindex)
 BEGIN 1+ 2DUP RSHIFT NOT UNTIL 1-
 (gid dpos dindex) NIP
 (gid dindex) SWAP 8 * + ;

2.15 TI-84+ Keyboard: 375-379 201

B379
: (key?) (-- c? f)
 0 _get $ff = IF (no key pressed) 0 EXIT THEN
 _alpha@ _alock@ IF NOT THEN IF _atbl ELSE _dtbl THEN
 _gti + C@ (c)
 DUP $80 = IF _2nd@ IF _alock^ ELSE 1 _alpha! THEN THEN
 DUP $81 = _2nd!
 DUP 1 $7f =><= IF (we have something)
 (lower?) _2nd@ IF DUP 'A' 'Z' =><= IF $20 OR THEN THEN
 0 _2nd! 0 _alpha! 1 (c f)
 ELSE (nothing) DROP 0 THEN ;
: KBD$ 0 [KBD_MEM LITN] C! ;

2.16 TRS-80 4P drivers: 380-391

B380
\ TRS-80 drivers declarations and macros
: TRS804PL 381 389 LOADR ; : TRS804PH 390 LOAD ;
$f800 CONSTANT VIDMEM $bf CONSTANT CURCHAR
: fdstat $f0 INAi, ;
: fdcmd A SWAP LDri, B $18 LDri,
 $f0 OUTiA, BEGIN, BR DJNZ, ;
: fdwait BEGIN, fdstat RRCA, BR JRC, RLCA, ;
: vid+, (reg --) HL VIDMEM LDdi, ADDHLd, ;

B381
\ TRS-80 4P video driver
24 CONSTANT LINES 80 CONSTANT COLS
CODE CELL! (c pos --) HL POP,
 A L LDrr, BC vid+, (HL) A LDrr, BC POP, ;CODE
CODE CELLS! (a pos u --) BC PUSH, EXX, BC POP, DE POP,
 DE vid+, EXDEHL, HL POP, BCZ, IFNZ, LDIR, THEN, EXX, BC POP,
;CODE
CODE CURSOR! (new old --) BC vid+, A (HL) LDrr, CURCHAR CPi,
 IFZ, UNDERCUR LDA(i), (HL) A LDrr, THEN,
 BC POP, BC vid+, A (HL) LDrr, UNDERCUR LD(i)A, A CURCHAR LDri,
 (HL) A LDrr, BC POP, ;CODE
CODE SCROLL (--)
 EXX, HL VIDMEM 80 + LDdi, DE VIDMEM LDdi, BC 1840 LDdi, LDIR,
 H D LDrr, L E LDrr, DE INCd, A SPC LDri, (HL) A LDrr,
 BC 79 LDdi, LDIR, EXX, ;CODE
: NEWLN (old -- new) 1+ DUP LINES = IF 1- SCROLL THEN ;

202 2 Z80

B382
LSET L2 (seek, B=trk)
 A 21 LDri, B CPr, FDMEM LDA(i), IFC, $20 ORi, (WP) THEN,
 $80 ORi, $f4 OUTiA, \ FD sel
 A B LDrr, (trk) $f3 OUTiA, $1c fdcmd RET,
CODE FDRD (trksec addr -- st) BC>HL, BC POP,
 L2 CALL, fdwait $98 ANDi, IFZ, DI,
 A C LDrr, $f2 OUTiA, (sec) C $f3 LDri, $84 fdcmd (read)
 BEGIN, BEGIN, fdstat $b6 ANDi, BR JRZ, \ DRQ
 $b4 ANDi, IFZ, TO L3 (error) INI, BR JRNZ, THEN,
 fdwait $3c ANDi, L3 FMARK A>BC, EI, ;CODE
CODE FDWR (trksec addr -- st) BC>HL, BC POP,
 L2 CALL, fdwait $98 ANDi, IFZ, DI,
 A C LDrr, $f2 OUTiA, (sec) C $f3 LDri, $a4 fdcmd (read)
 BEGIN, BEGIN, fdstat $f6 ANDi, BR JRZ, \ DRQ
 $f4 ANDi, IFZ, TO L3 (error) OUTI, BR JRNZ, THEN,
 fdwait $3c ANDi, L3 FMARK A>BC, EI, ;CODE

B383
CODE _dsel (fdmask --)
 A C LDrr, FDMEM LD(i)A, $80 ORi, $f4 OUTiA,
 0 fdcmd (restore) fdwait BC POP, ;CODE
: FDSEL (drvno --) 1 SWAP LSHIFT [FDMEM LITN] C@ OVER = NOT
 IF _dsel ELSE DROP THEN ;
FDMEM 1+ DUP CONSTANT 'FDOP *ALIAS FDOP
FDMEM 3 + CONSTANT FDOFFS \ 4b, 2 for each drive
: _err LIT" FDerr " STYPE .X ABORT ;
: _trksec (sec -- trksec)
\ 4 256b sectors per block, 18 sec per trk, 40 trk max
 18 /MOD (sec trk) DUP 39 > IF $ffff _err THEN <<8 + ;
: _in? (blk off -- f) - 180 < ;
: _dadj (blk -- blk)
 FDOFFS @ 2DUP _in? IF 0 FDSEL - EXIT THEN DROP (blk)
 FDOFFS 1+ 1+ @ 2DUP _in? IF 1 FDSEL - EXIT THEN DROP (blk)
 . SPC> LIT" is out of disk range" STYPE ABORT ;

B384
: FD@! (blk blk(--)
 A> >R SWAP _dadj << << (blk*4=sec) >A 4 >R BEGIN (dest)
 A> A+ _trksec OVER (dest trksec dest)
 FDOP (dest) ?DUP IF _err THEN $100 +
 NEXT DROP R> >A ;
: FD@ ['] FDRD 'FDOP ! FD@! ;
: FD! ['] FDWR 'FDOP ! FD@! ;

2.16 TRS-80 4P drivers: 380-391 203

B385
: CL$ (baudcode --)
 $02 $e8 PC! (UART RST) DUP 16 * OR $e9 PC! (bauds)
 $6d $ea PC! (word8 no parity no-RTS) ;
CODE TX> BEGIN,
 $ea INAi, $40 ANDi, IFNZ, (TX reg empty)
 $e8 INAi, $80 ANDi, IFZ, (CTS low)
 A C LDrr, $eb OUTiA, (send byte) BC POP, ;CODE
 THEN, THEN, BR JR,

B386
CODE RX<? BC PUSH,
 A XORr, (256x) BC 0 LDdi, (pre-push a failure)
 A $6c (RTS low) LDri, $ea OUTiA,
 BEGIN, EXAFAF', (preserve cnt)
 $ea INAi, $80 ANDi, (rcv buff full?)
 IFNZ, (full)
 $eb INAi, A>HL, HL PUSH, C INCr, A XORr, (end loop)
 ELSE, EXAFAF', (recall cnt) A DECr, THEN,
 BR JRNZ,
 A $6d (RTS high) LDri, $ea OUTiA, ;CODE

B387
LSET L1 6 nC, '`' 'h' 'p' 'x' '0' '8'
LSET L2 8 nC, $0d 0 $ff 0 0 $08 0 $20
PC XORG $39 + T! (RST 38)
AF PUSH, HL PUSH, DE PUSH, BC PUSH,
$ec INAi, (RTC INT ack)
$f440 LDA(i), A ORr, IFNZ, \ 7th row is special
 HL L2 1- LDdi, BEGIN, HL INCd, RRA, BR JRNC,
 A (HL) LDrr, ELSE, \ not 7th row
 HL L1 LDdi, DE $f401 LDdi, BC $600 LDdi, BEGIN,
 LDA(DE), A ORr, IFNZ,
 C (HL) LDrr, BEGIN, C INCr, RRA, BR JRNC,
 C DECr, THEN,
 E SLA, HL INCd, BR DJNZ,
 A C LDrr, THEN, \ cont.

204 2 Z80

B388
\ A=char or zero if no keypress. Now let's debounce
HL KBD_MEM 2 + LDdi, A ORr, IFZ, \ no keypress, debounce
 (HL) A LDrr, ELSE, \ keypress, is it debounced?
 (HL) CPr, IFNZ, \ != debounce buffer
 C A LDrr, (HL) C LDrr, $ff CPi, IFZ, \ BREAK!
 HL POP, HL POP, HL POP, HL POP, HL POP, EI,
 X' QUIT JP, THEN,
 HL DECd, $f480 LDA(i), 3 ANDi, (HL) A LDrr, HL DECd,
 (HL) C LDrr, THEN, THEN,
BC POP, DE POP, HL POP, AF POP, EI, RET,

B389
KBD_MEM CONSTANT KBDBUF \ LSB=char MSB=shift
: KBD$ 0 KBDBUF ! $04 $e0 PC! (enable RTC INT) (im1) ;
: (key?) KBDBUF @ DUP <<8 >>8 NOT IF DROP 0 EXIT THEN
 0 KBDBUF ! L|M (char flags)
 OVER '<' '`' =><= IF 1 XOR THEN \ invert shift
 TUCK 1 AND IF \ lshift (flags char)
 DUP '@' < IF $ef ELSE $df THEN AND THEN
 SWAP 2 AND IF \ rshift (char)
 DUP '1' < IF $2f ELSE $4a THEN + THEN
 1 (success) ;

B390
: FD0 FLUSH 0 FDSEL ;
: FD1 FLUSH 1 FDSEL ;
:~ [FDMEM LITN] C@ 1- << FDOFFS + ! ;
: D1 0 ~ ; : D2 200 ~ ; : D3 300 ~ ; : D4 400 ~ ; : D5 500 ~ ;
: ND $8000 ~ ;
: FD$ FDOFFS 4 $80 FILL (no disk) 1 FDSEL ;

2.16 TRS-80 4P drivers: 380-391 205

B391
\ TRS-80 4P bootloader. Loads sectors 2-17 to addr 0.
DI, A $86 LDri, $84 OUTiA, \ mode 2, 80 chars, page 1
A $81 LDri, $f4 OUTiA, \ DRVSEL DD, drv0
A $40 LDri, $ec OUTiA, \ MODOUT 4MHZ, no EXTIO
HL 0 LDdi, (dest addr) A XORr, $e4 OUTiA, (no NMI)
A INCr, (trk1) BEGIN,
 $f3 OUTiA, EXAFAF', (save) $18 (seek) fdcmd fdwait
 A XORr, $f2 OUTiA, C $f3 LDri, BEGIN,
 $80 (read sector) fdcmd (B=0)
 BEGIN, fdstat RRA, RRA, BR JRNC, (DRQ)
 INI, A $c1 LDri, BEGIN, $f4 OUTiA, INI, BR JRNZ,
 fdwait $1c (error mask) ANDi, IFNZ,
 SPC ADDi, VIDMEM LD(i)A, BEGIN, BR JR, THEN,
 $f2 INAi, A INCr, $f2 OUTiA, 18 CPi, BR JRC,
 EXAFAF', (restore) A INCr, 3 CPi, BR JRC, 0 RST,

2.17 Dan SBC drivers: 395-409

B395
\ Dan SBC drivers. See doc/hw/z80/dan.txt
\ Macros
: OUTii, (val port --) A ROT LDri, OUTiA, ;
: repeat (n --) >R ' BEGIN (w) DUP EXECUTE NEXT DROP ;

B396
\ SPI relay driver
CODE (spix) (n -- n)
 A C LDrr,
 SPI_DATA OUTiA,
 (wait until xchg is done)
 NOP, NOP, NOP, NOP,
 SPI_DATA INAi,
 C A LDrr, ;CODE
CODE (spie) (n --)
 $9A CTL8255 OUTii, $3 CTL8255 OUTii,
 A C LDrr, 1 XORi, 1 ANDi, CTL8255 OUTiA, BC POP, ;CODE

206 2 Z80

B397
\ software framebuffer subsystem
VID_MEM CONSTANT VD_DECFR
VID_MEM $02 + CONSTANT VD_DECTL
VID_MEM $04 + CONSTANT VD_CURCL
VID_MEM $06 + CONSTANT VD_FRMST
VID_MEM $08 + CONSTANT VD_COLS
VID_MEM $0A + CONSTANT VD_LINES
VID_MEM $0C + CONSTANT VD_FRB
VID_MEM $0E + CONSTANT VD_OFS
\ Clear Framebuffer
CODE (vidclr) (--) BC PUSH,
 $9A CTL8255 OUTii, $3 CTL8255 OUTii, $1 CTL8255 OUTii,
 BC VID_MEM $10 + LDdi, HL VID_WDTH VID_SCN * LDdi,
 BEGIN, A XORr, LD(BC)A, BC INCd, HL DECd, HLZ, BR JRNZ,
 BC POP, ;CODE

B398
: VID_OFS
 [VID_WDTH 8 * LITN] * + VD_FRB @ + VD_OFS ! (vidclr) ;
: VID$ (--)
 1 VD_DECFR ! 0 VD_DECTL ! 0 VD_CURCL ! 0
 VD_FRMST ! [VID_WDTH 1 - LITN] VD_COLS !
 [VID_LN 1 - LITN] VD_LINES !
 [VID_MEM $10 + LITN] VD_FRB ! 1 4 VID_OFS ;

B399
: COLS VD_COLS @ ;
: LINES VD_LINES @ ;
: VID_LOC VD_COLS @ /MOD
 [VID_WDTH 8 * LITN] * VD_OFS @ + ;
: CELL! VID_LOC + SWAP SPC - DUP 96 < IF
 DUP DUP << + << + ~FNT + 7 >R BEGIN
 2DUP C@ >> SWAP C! 1+ SWAP
 [VID_WDTH LITN] + SWAP NEXT
 DROP 0 SWAP C! ELSE 2DROP THEN ;

2.17 Dan SBC drivers: 395-409 207

B400
: VID_LCR VID_LOC SWAP DUP
 DUP 12 < IF DROP 0 ELSE 12 -
 DUP [VID_WDTH 24 - LITN] > IF DROP [VID_WDTH 24 - LITN]
 THEN THEN VD_CURCL ! ;
: CURSOR! 0 SWAP VID_LOC + [VID_WDTH 7 * LITN] + C!
 255 SWAP VID_LCR + [VID_WDTH 7 * LITN] + C! ;
CODE (vidscr) BC PUSH, EXX,
 BC VID_SCN 8 - VID_WDTH * LDdi, DE VID_MEM $10 + LDdi,
 HL VID_MEM $10 + VID_WDTH 8 * + LDdi,
 LDIR, HL VID_WDTH 8 * LDdi,
 BEGIN, A XORr, LD(DE)A, DE INCd, HL DECd, HLZ,
 BR JRNZ, EXX, BC POP, ;CODE
: NEWLN DUP 1+ VD_LINES @ = IF (vidscr) ELSE 1+ THEN ;

B401
\ Stream video frames, single scan
CODE (vidfr) (--) BC PUSH, EXX,
 C SPI_DATA LDri, DE VID_MEM $04 + LDd(i),
 HL VID_MEM 40 + VID_WDTH - LDdi, DE ADDHLd,
 VID_MEM $06 + LD(i)HL, DE VID_WDTH 24 - LDdi,
 B VID_SCN LDri,
 LSET L1 BEGIN,
 6 CTL8255 OUTii, DE ADDHLd, 7 CTL8255 OUTii,
 A B LDrr, 4 repeat NOP, 24 repeat OUTI,
 B A LDrr, BR DJNZ,
 B 0 LDri, B 0 LDri, B 0 LDri, B VID_VBL 1 - LDri, FJR JR,
 LSET L2 A VID_VBL 1 - LDri, FJR JR, FMARK FMARK
 A B LDrr, B 28 LDri, BEGIN, BR DJNZ, HL INCd, B A LDrr,
 7 CTL8255 OUTii, 5 repeat NOP, 6 CTL8255 OUTii,
 L2 BR DJNZ,

B402
 VID_MEM $02 + LDA(i), B A LDrr, VID_MEM LDA(i),
 B SUBr, IFNZ,
 VID_MEM LD(i)A, B 23 LDri, HL INCd, B 23 LDri,
 BEGIN, BR DJNZ,
 VID_MEM $06 + LDHL(i), B VID_SCN LDri, 7 CTL8255 OUTii,
 5 repeat NOP, 6 CTL8255 OUTii, L1 JMPi,
 THEN, EXX, BC POP, ;CODE

208 2 Z80

B403
\ Stream video frames, double scan
CODE (vidfr) (--) BC PUSH, EXX,
 C SPI_DATA LDri, DE VID_MEM $04 + LDd(i),
 HL VID_MEM 40 + VID_WDTH - LDdi, DE ADDHLd,
 VID_MEM $06 + LD(i)HL, DE VID_WDTH 24 - LDdi, B VID_SCN LDri,
 LSET L1 BEGIN,
 6 CTL8255 OUTii, DE ADDHLd, 7 CTL8255 OUTii, A B LDrr,
 DE DECd, DE -25 LDdi, 24 repeat OUTI,
 AF PUSH, DE INCd, 6 CTL8255 OUTii, DE ADDHLd,
 7 CTL8255 OUTii, AF POP, DE VID_WDTH 24 - LDdi,
 24 repeat OUTI, B A LDrr, BR DJNZ,
 B 0 LDri, B 0 LDri, B 0 LDri, B VID_VBL 1 - LDri, FJR JR,
 LSET L2 A VID_VBL 1 - LDri, FJR JR, FMARK FMARK
 A B LDrr, B 28 LDri, BEGIN, BR DJNZ, HL INCd, B A LDrr,
 7 CTL8255 OUTii, 5 repeat NOP, 6 CTL8255 OUTii,
 L2 BR DJNZ,

B404
 VID_MEM $02 + LDA(i), B A LDrr, VID_MEM LDA(i), B SUBr, IFNZ,
 VID_MEM LD(i)A, B 23 LDri, HL INCd, B 23 LDri,
 BEGIN, BR DJNZ, VID_MEM $06 + LDHL(i), B VID_SCN LDri,
 7 CTL8255 OUTii, 5 repeat NOP, 6 CTL8255 OUTii, L1 JMPi,
 THEN, EXX, BC POP, ;CODE

B405
\ PS2 keyboard driver subsystem
PSK_MEM CONSTANT PSK_STAT
PSK_MEM $02 + CONSTANT PSK_CC
PSK_MEM $04 + CONSTANT PSK_BUFI
PSK_MEM $06 + CONSTANT PSK_BUFO
PSK_MEM $08 + CONSTANT PSK_BUF
PC XORG $39 + T! (RST 38)
DI, AF PUSH, $10 SIOA_CTL OUTii, SIOA_CTL INAi,
4 A BIT, IFZ, AF POP, EI, RETI, THEN, (I1 - T1)
PSK_MEM LDA(i), A ORr,
IFZ, PTC8255 INAi, 7 A BIT, (I1 -)
IFZ, A 1 LDri, PSK_MEM LD(i)A, THEN, (I2 - T2)

2.17 Dan SBC drivers: 395-409 209

B406
AF POP, EI, RETI, THEN, (- T1)
$9 CPi, FJR JRNZ, TO L3
HL PUSH, PSK_MEM $02 + LDHL(i), H 8 LDri, A XORr,
BEGIN, L RRC, 0 ADCi, H DECr, BR JRNZ,
H A LDrr, PTC8255 INAi, A H LDrr, 0 ADCi, $1 ANDi,
FJR JRZ, TO L1 A XORr, VID_MEM LD(i)A, VID_MEM $02 + LD(i)A,
PSK_MEM $04 + LDA(i), L A LDrr, PSK_MEM $06 + LDA(i),
A INCr, PS2_BMSK ANDi, L CPr, FJR JRZ, TO L1
PSK_MEM $06 + LD(i)A, L A LDrr,
A PSK_MEM $08 + <<8 >>8 LDri, L ADDr, L A LDrr,
A PSK_MEM $08 + >>8 LDri, 0 ADCi,

B407
H A LDrr, PSK_MEM $02 + LDA(i), (HL) A LDrr,
L1 FMARK A XORr, PSK_MEM LD(i)A, HL POP, AF POP, EI, RETI,
L3 FMARK PTC8255 INAi, RLCA, PSK_MEM $02 + LDA(i),
RRA, PSK_MEM $02 + LD(i)A,
PSK_MEM LDA(i), A INCr, PSK_MEM LD(i)A,
AF POP, EI, RETI,

B408
CODE (pskset)
 DI, $11 SIOA_CTL OUTii, $19 SIOA_CTL OUTii, IM1, EI, ;CODE
: PSK< (-- n)
 PSK_BUFI @ PSK_BUFO @ = IF 0 ELSE PSK_BUFI @
 1+ [PS2_BMSK LITN] AND DUP PSK_BUF + C@
 SWAP PSK_BUFI ! THEN ;
: PSKV< (-- n)
 PSK_BUFI @ PSK_BUFO @ = IF
 BEGIN 1 VD_DECFR ! (vidfr)
 PSK_BUFI @ PSK_BUFO @ = NOT UNTIL THEN
 PSK_BUFI @ 1+ [PS2_BMSK LITN] AND DUP
 PSK_BUF + C@ SWAP PSK_BUFI ! ;
: PSK$ (--)
 0 PSK_BUFO ! 0 PSK_BUFI ! 0 PSK_STAT ! (pskset) ;

210 2 Z80

B409
: (ps2kc) 0 BEGIN DROP PSKV<
 DUP 5 = IF 0 VD_CURCL ! DROP 0 THEN
 DUP 6 = IF VD_CURCL @ 4 < IF 0 ELSE VD_CURCL @ 4 - THEN
 VD_CURCL ! DROP 0 THEN
 DUP 4 = IF VD_CURCL @ [VID_WDTH 28 - LITN] > IF
 [VID_WDTH 24 - LITN] ELSE VD_CURCL @ 4 + THEN
 VD_CURCL ! DROP 0 THEN DUP UNTIL ;

2.18 Virgil's workspace: 410-416

B410
\ playing with FDC 179x's READ ADDRESS cmd.
\ needs B380 macros and B382's L2
\ read 26 ID fields and write their 26*6 bytes to a
CODE FDADDR (trk a -- st) \ st=status byte w/ error-only mask
 DE PUSH, BC>HL, A $81 LDri, $f4 OUTiA, fdwait
 DI, D 26 LDri, BEGIN, $c4 fdcmd BC $06f3 LDdi,
 BEGIN, BEGIN, fdstat $b6 ANDi, BR JRZ, \ DRQ
 $b4 ANDi, IFZ, TO L3 (error) INI, BR JRNZ,
 fdwait D DECr, BR JRNZ,
 (A from fdwait) $3c ANDi, L3 FMARK EI, A>BC, DE POP, ;CODE

CODE FDSEEK (trk -- st)
 A 21 LDri, C CPr, A $81 LDri, IFC, $20 ORi, (WP) THEN,
 $f4 OUTiA, A B LDrr, (trk) $f3 OUTiA, $18 fdcmd
 fdwait $98 ANDi, C A LDrr, B 0 LDri, ;CODE

B411
: INIR, $edb2 M, ;
CODE FDTRK@ (a -- st) \ st=status byte w/ error-only mask
 BC>HL, A $81 LDri, $f4 OUTiA, fdwait
\ DI, $e4 fdcmd C $f3 LDri,
\ BEGIN, fdstat 2 ANDi, BR JRZ, \ DRQ
\ INIR, INIR, INIR, INIR, INIR, fdstat EI, A>BC, ;CODE
\ LSET L1 INI,
\ LSET L2 fdstat RRA, RRA, L1 BR JRC, (DRQ!)
\ RLA, L2 BR JRC,
\ RLA, $3c ANDi, EI, A>BC, ;CODE

2.18 Virgil's workspace: 410-416 211

B412
: INIR, $edb2 M, ;
CODE FDTRK@ (a -- st) \ st=status byte w/ error-only mask
 BC>HL, A $81 LDri, $f4 OUTiA, fdwait
 DI, $e4 fdcmd C $f3 LDri,
 BEGIN, fdstat 2 ANDi, BR JRZ, \ DRQ
 INIR, INIR, INIR, INIR, INIR, INIR, INIR, INIR, INIR,

 \ fdstat RRA, BR JRC,
 fdstat EI, A>BC, ;CODE
\ INIR, INIR, INIR, INIR, INIR, fdstat EI, A>BC, ;CODE
\ LSET L1 INI,
\ LSET L2 fdstat RRA, RRA, L1 BR JRC, (DRQ!)
\ RLA, L2 BR JRC,
\ RLA, $3c ANDi, EI, A>BC, ;CODE

B413
\ xcomp for my TRS80 4P.
\ Requires ARCHM, Z80A and D2 and D3 loaded in drives
3 CONSTS $f300 RS_ADDR $f3fa PS_ADDR 0 HERESTART
RS_ADDR $90 - CONSTANT SYSVARS
SYSVARS $80 + CONSTANT DRVMEM
DRVMEM CONSTANT KBD_MEM
DRVMEM 3 + CONSTANT GRID_MEM
DRVMEM 6 + CONSTANT FDMEM
DRVMEM 13 + CONSTANT UNDERCUR
DRVMEM 14 + CONSTANT RXTX_MEM
: comp1 XCOMPL Z80H TRS804PM 414 LOAD
 ." type comp2" ;

B414
\ xcomp for my TRS80 4P, part 2
: comp2 XCOMPH Z80C COREL Z80H
 ." Load D3 and D1 and type comp3" ;
: comp3 ASMH TRS804PL 415 LOAD
 ." Load D3 and D2 and type comp4" ;
: comp4 BLKSUB GRIDSUB TRS804PH 416 LOAD
 ." Finish the whole thing with XWRAP" ;

212 2 Z80

B415
\ xcomp for my TRS-80 4P, part 3
ALIAS FD@ (blk@)
ALIAS FD! (blk!)

B416
\ xcomp for my TRS80 4P, part 4
: INIT GRID$ KBD$ BLK$ FD$;

3 AVR

3.1 Architecture index: 300

B300
AVR MASTER INDEX

301 AVR macros 302 AVR assembler
320 SMS PS/2 controller 345 Arduino blinker
350 Arduino SPI spitter

3.2 AVR macros: 301 213

3.2 AVR macros: 301

B301
: AVRA 302 312 LOADR ;
: ATMEGA328P 315 LOAD ;

3.3 AVR assembler: 302-312

B302
\ AVR assembler. See doc/asm/avr.txt.
\ We divide by 2 because each PC represents a word.
: PC HERE XORG - >> ;
: <<3 << << << ; : <<4 <<3 << ;
: _oor ." arg out of range: " .X SPC> ." PC " PC .X NL> ABORT ;
: _r8c DUP 7 > IF _oor THEN ;
: _r32c DUP 31 > IF _oor THEN ;
: _r16+c _r32c DUP 16 < IF _oor THEN ;
: _r64c DUP 63 > IF _oor THEN ;
: _r256c DUP 255 > IF _oor THEN ;
: _Rdp (op rd -- op', place Rd) <<4 OR ;

B303
(0000 000d dddd 0000)
: OPRd DOER , DOES> @ SWAP _r32c _Rdp L, ;
$9405 OPRd ASR, $9400 OPRd COM,
$940a OPRd DEC, $9403 OPRd INC,
$9206 OPRd LAC, $9205 OPRd LAS,
$9207 OPRd LAT,
$9406 OPRd LSR, $9401 OPRd NEG,
$900f OPRd POP, $920f OPRd PUSH,
$9407 OPRd ROR, $9402 OPRd SWAP,
$9204 OPRd XCH,

$9200 OPRd _ : STS, (k16 rd) _ L, ;
$9000 OPRd _ : LDS, (rd k16) SWAP _ L, ;

214 3 AVR

B304
(0000 00rd dddd rrrr)
: OPRdRr DOER C, DOES> C@ (rd rr op)
 OVER _r32c $10 AND >> >> >> OR (rd rr op')
 <<8 OR $ff0f AND (rd op')
 SWAP _r32c _Rdp L, ;
$1c OPRdRr ADC, $0c OPRdRr ADD, $20 OPRdRr AND,
$14 OPRdRr CP, $04 OPRdRr CPC, $10 OPRdRr CPSE,
$24 OPRdRr EOR, $2c OPRdRr MOV, $9c OPRdRr MUL,
$28 OPRdRr OR, $08 OPRdRr SBC, $18 OPRdRr SUB,

(0000 0AAd dddd AAAA)
: OPRdA DOER C, DOES> C@ (rd A op)
 OVER _r64c $30 AND >> >> >> OR (rd A op')
 <<8 OR $ff0f AND (rd op') SWAP _r32c _Rdp L, ;
$b0 OPRdA IN, $b8 OPRdA _ : OUT, SWAP _ ;

B305
(0000 KKKK dddd KKKK)
: OPRdK DOER C, DOES> C@ (rd K op)
 OVER _r256c $f0 AND >> >> >> >> OR (rd K op')
 ROT _r16+c <<4 ROT $0f AND OR (op' rdK) C, C, ;
$70 OPRdK ANDI, $30 OPRdK CPI, $e0 OPRdK LDI,
$60 OPRdK ORI, $40 OPRdK SBCI, $60 OPRdK SBR,
$50 OPRdK SUBI,

(0000 0000 AAAA Abbb)
: OPAb DOER C, DOES> C@ (A b op)
 ROT _r32c <<3 ROT _r8c OR C, C, ;
$98 OPAb CBI, $9a OPAb SBI, $99 OPAb SBIC,
$9b OPAb SBIS,

B306
: OPNA DOER , DOES> @ L, ;
$9598 OPNA BREAK, $9488 OPNA CLC, $94d8 OPNA CLH,
$94f8 OPNA CLI, $94a8 OPNA CLN, $94c8 OPNA CLS,
$94e8 OPNA CLT, $94b8 OPNA CLV, $9498 OPNA CLZ,
$9419 OPNA EIJMP, $9509 OPNA ICALL, $9519 OPNA EICALL,
$9409 OPNA IJMP, $0000 OPNA NOP, $9508 OPNA RET,
$9518 OPNA RETI, $9408 OPNA SEC, $9458 OPNA SEH,
$9478 OPNA SEI, $9428 OPNA SEN, $9448 OPNA SES,
$9468 OPNA SET, $9438 OPNA SEV, $9418 OPNA SEZ,
$9588 OPNA SLEEP, $95a8 OPNA WDR,

3.3 AVR assembler: 302-312 215

B307
(0000 0000 0sss 0000)
: OPb DOER , DOES> @ (b op)
 SWAP _r8c _Rdp L, ;
$9488 OPb BCLR, $9408 OPb BSET,

(0000 000d dddd 0bbb)
: OPRdb DOER , DOES> @ (rd b op)
 ROT _r32c _Rdp SWAP _r8c OR L, ;
$f800 OPRdb BLD, $fa00 OPRdb BST,
$fc00 OPRdb SBRC, $fe00 OPRdb SBRS,

(special cases)
: CLR, DUP EOR, ; : TST, DUP AND, ; : LSL, DUP ADD, ;

B308
(a -- k12, absolute addr a, relative to PC in a k12 addr)
: _r7ffc DUP $7ff > IF _oor THEN ;
: _raddr12
 PC - DUP 0< IF $800 + _r7ffc $800 OR ELSE _r7ffc THEN ;
: RJMP _raddr12 $c000 OR ;
: RCALL _raddr12 $d000 OR ;
: RJMP, RJMP L, ; : RCALL, RCALL L, ;

B309
(a -- k7, absolute addr a, relative to PC in a k7 addr)
: _r3fc DUP $3f > IF _oor THEN ;
: _raddr7
 PC - DUP 0< IF $40 + _r3fc $40 OR ELSE _r3fc THEN ;
: _brbx (a b op -- a) OR SWAP _raddr7 <<3 OR ;
: BRBC $f400 _brbx ; : BRBS $f000 _brbx ; : BRCC 0 BRBC ;
: BRCS 0 BRBS ; : BREQ 1 BRBS ; : BRNE 1 BRBC ; : BRGE 4 BRBC ;
: BRHC 5 BRBC ; : BRHS 5 BRBS ; : BRID 7 BRBC ; : BRIE 7 BRBS ;
: BRLO BRCS ; : BRLT 4 BRBS ; : BRMI 2 BRBS ; : BRPL 2 BRBC ;
: BRSH BRCC ; : BRTC 6 BRBC ; : BRTS 6 BRBS ; : BRVC 3 BRBC ;
: BRVS 3 BRBS ;

216 3 AVR

B310
9 CONSTS $100c X $0008 Y $0000 Z
 $100d X+ $1009 Y+ $1001 Z+
 $100e -X $100a -Y $1002 -Z
: _ (Rd XYZ op) OR (Rd op') SWAP _Rdp L, ;
: LD, $8000 _ ; : ST, SWAP $8200 _ ;
: LPM, $9004 _ ;

B311
\ LBL! L1 .. L1 ' RJMP LBL,
: LBL! (--) PC TO ;
: LBL, (opw pc --) 1- SWAP EXECUTE L, ;
: SKIP, PC 0 L, ;
: TO, (opw pc)
 \ warning: pc is a PC offset, not a mem addr!
 << XORG + PC 1- HERE (opw addr tgt hbkp)
 ROT 'HERE ! (opw tgt hbkp)
 SWAP ROT EXECUTE HERE ! (hbkp) 'HERE ! ;
\ FLBL, L1 .. ' RJMP L1 TO,
: FLBL, LBL! 0 L, ;
: BEGIN, PC ; : AGAIN?, (pc op) SWAP LBL, ;
: AGAIN, ['] RJMP AGAIN?, ;
: IF, ['] BREQ SKIP, ; : THEN, TO, ;

B312
\ Constant common to all AVR models
38 CONSTS 0 R0 1 R1 2 R2 3 R3 4 R4 5 R5 6 R6 7 R7 8 R8 9 R9
 10 R10 11 R11 12 R12 13 R13 14 R14 15 R15 16 R16 17 R17
 18 R18 19 R19 20 R20 21 R21 22 R22 23 R23 24 R24 25 R25
 26 R26 27 R27 28 R28 29 R29 30 R30 31 R31
 26 XL 27 XH 28 YL 29 YH 30 ZL 31 ZH

3.4 ATmega328P definitions: 315 217

3.4 ATmega328P definitions: 315

B315
(ATmega328P definitions) 87 CONSTS
$c6 UDR0 $c4 UBRR0L $c5 UBRR0H $c2 UCSR0C $c1 UCSR0B $c0 UCSR0A
$bd TWAMR $bc TWCR $bb TWDR $ba TWAR $b9 TWSR $b8 TWBR $b6 ASSR
$b4 OCR2B $b3 OCR2A $b2 TCNT2 $b1 TCCR2B $b0 TCCR2A $8a OCR1BL
$8b OCR1BH $88 OCR1AL $89 OCR1AH $86 ICR1L $87 ICR1H $84 TCNT1L
$85 TCNT1H $82 TCCR1C $81 TCCR1B $80 TCCR1A $7f DIDR1 $7e DIDR0
$7c ADMUX $7b ADCSRB $7a ADCSRA $79 ADCH $78 ADCL $70 TIMSK2
$6f TIMSK1 $6e TIMSK0 $6c PCMSK1 $6d PCMSK2 $6b PCMSK0 $69 EICRA
$68 PCICR $66 OSCCAL $64 PRR $61 CLKPR $60 WDTCSR $3f SREG
$3d SPL $3e SPH $37 SPMCSR $35 MCUCR $34 MCUSR $33 SMCR $30 ACSR
$2e SPDR $2d SPSR $2c SPCR $2b GPIOR2 $2a GPIOR1 $28 OCR0B
$27 OCR0A $26 TCNT0 $25 TCCR0B $24 TCCR0A $23 GTCCR $22 EEARH
$21 EEARL $20 EEDR $1f EECR $1e GPIOR0 $1d EIMSK $1c EIFR
$1b PCIFR $17 TIFR2 $16 TIFR1 $15 TIFR0 $0b PORTD $0a DDRD
$09 PIND $08 PORTC $07 DDRC $06 PINC $05 PORTB $04 DDRB $03 PINB

3.5 SMS PS/2 controller: 320-342

B320
SMS PS/2 controller (doc/hw/z80/sms)

To assemble, load the AVR assembler with AVRA, then
"324 342 LOADR".

Receives keystrokes from PS/2 keyboard and send them to the
'164. On the PS/2 side, it works the same way as the controller
in the rc2014/ps2 recipe. However, in this case, what we have
on the other side isn't a z80 bus, it's the one of the two
controller ports of the SMS through a DB9 connector.

The PS/2 related code is copied from rc2014/ps2 without much
change. The only differences are that it pushes its data to a
'164 instead of a '595 and that it synchronizes with the SMS
with a SR latch, so we don't need PCINT. We can also afford to
run at 1MHz instead of 8. cont.

B321
Register Usage

GPIOR0 flags:
0 - when set, indicates that the DATA pin was high when we
 received a bit through INT0. When we receive a bit, we set
 flag T to indicate it.

R16: tmp stuff
R17: recv buffer. Whenever we receive a bit, we push it in
 there.
R18: recv step:
 - 0: idle
 - 1: receiving data
 - 2: awaiting parity bit
 - 3: awaiting stop bit cont.

218 3 AVR

B322
R19: Register used for parity computations and tmp value in
 some other places
R20: data being sent to the '164
Y: pointer to the memory location where the next scan code from
 ps/2 will be written.
Z: pointer to the next scan code to push to the 595

B324
18 CONSTS $0060 SRAM_START $015f RAMEND $3d SPL $3e SPH
 $11 GPIOR0 $35 MCUCR $33 TCCR0B $3b GIMSK
 $38 TIFR $32 TCNT0 $16 PINB $17 DDRB $18 PORTB
 2 CLK 1 DATA 3 CP 0 LQ 4 LR
$100 100 - CONSTANT TIMER_INITVAL
\ We need a lot of labels in this program...
5 VALUES L4 L5 L6 L7 L8

B325
FLBL, L1 \ main
FLBL, L2 \ hdlINT0
\ Read DATA and set GPIOR0/0 if high. Then, set flag T.
\ no SREG fiddling because no SREG-modifying instruction
' RJMP L2 TO, \ hdlINT0
PINB DATA SBIC,
GPIOR0 0 SBI,
SET,
RETI,

3.5 SMS PS/2 controller: 320-342 219

B326
' RJMP L1 TO, \ main
R16 RAMEND <<8 >>8 LDI, SPL R16 OUT,
R16 RAMEND >>8 LDI, SPH R16 OUT,
R18 CLR, GPIOR0 R18 OUT, \ init variables
R16 $02 (ISC01) LDI, MCUCR R16 OUT, \ INT0, falling edge
R16 $40 (INT0) LDI, GIMSK R16 OUT, \ Enable INT0
YH CLR, YL SRAM_START LDI, \ Setup buffer
ZH CLR, ZL SRAM_START LDI,
\ Setup timer. We use the timer to clear up "processbit"
\ registers after 100us without a clock. This allows us to start
\ the next frame in a fresh state. at 1MHZ, no prescaling is
\ necessary. Each TCNT0 tick is already 1us long.
R16 $01 (CS00) LDI, \ no prescaler
TCCR0B R16 OUT,
DDRB CP SBI, PORTB LR CBI, DDRB LR SBI, SEI,

B327
LBL! L1 \ loop
FLBL, L2 \ BRTS processbit. flag T set? we have a bit to process
YL ZL CP, \ if YL == ZL, buf is empty
FLBL, L3 \ BRNE sendTo164. YL != ZL? buf has data
\ nothing to do. Before looping, let's check if our
\ communication timer overflowed.
R16 TIFR IN,
R16 1 (TOV0) SBRC,
FLBL, L4 \ RJMP processbitReset, timer0 overflow? reset
\ Nothing to do for real.
' RJMP L1 LBL, \ loop

B328
\ Process the data bit received in INT0 handler.
' BRTS L2 TO, \ processbit
R19 GPIOR0 IN, \ backup GPIOR0 before we reset T
R19 $1 ANDI, \ only keep the first flag
GPIOR0 0 CBI,
CLT, \ ready to receive another bit
\ We've received a bit. reset timer
FLBL, L2 \ RCALL resetTimer
\ Which step are we at?
R18 TST, FLBL, L5 \ BREQ processbits0
R18 1 CPI, FLBL, L6 \ BREQ processbits1
R18 2 CPI, FLBL, L7 \ BREQ processbits2

220 3 AVR

B329
\ step 3: stop bit
R18 CLR, \ happens in all cases
\ DATA has to be set
R19 TST, \ was DATA set?
' BREQ L1 LBL, \ loop, not set? error, don't push to buf
\ push r17 to the buffer
Y+ R17 ST,
FLBL, L8 \ RCALL checkBoundsY
' RJMP L1 LBL, \ loop

B330
' BREQ L5 TO, \ processbits0
\ step 0 - start bit
\ DATA has to be cleared
R19 TST, \ was DATA set?
' BRNE L1 LBL, \ loop. set? error. no need to do anything. keep
 \ r18 as-is.
\ DATA is cleared. prepare r17 and r18 for step 1
R18 INC,
R17 $80 LDI,
' RJMP L1 LBL, \ loop

B331
' BREQ L6 TO, \ processbits1
\ step 1 - receive bit
\ We're about to rotate the carry flag into r17. Let's set it
\ first depending on whether DATA is set.
CLC,
R19 0 SBRC, \ skip if DATA is cleared
SEC,
\ Carry flag is set
R17 ROR,
\ Good. now, are we finished rotating? If carry flag is set,
\ it means that we've rotated in 8 bits.
' BRCC L1 LBL, \ loop
\ We're finished, go to step 2
R18 INC,
' RJMP L1 LBL, \ loop

3.5 SMS PS/2 controller: 320-342 221

B332
' BREQ L7 TO, \ processbits2
\ step 2 - parity bit
R1 R19 MOV,
R19 R17 MOV,
FLBL, L5 \ RCALL checkParity
R1 R16 CP,
FLBL, L6 \ BRNE processBitError, r1 != r16? wrong parity
R18 INC,
' RJMP L1 LBL, \ loop

B333
' BRNE L6 TO, \ processBitError
R18 CLR,
R19 $fe LDI,
FLBL, L6 \ RCALL sendToPS2
' RJMP L1 LBL, \ loop

' RJMP L4 TO, \ processbitReset
R18 CLR,
FLBL, L4 \ RCALL resetTimer
' RJMP L1 LBL, \ loop

B334
' BRNE L3 TO, \ sendTo164
\ Send the value of r20 to the '164
PINB LQ SBIS, \ LQ is set? we can send the next byte
' RJMP L1 LBL, \ loop, even if we have something in the
 \ buffer, we can't: the SMS hasn't read our
 \ previous buffer yet.
\ We disable any interrupt handling during this routine.
\ Whatever it is, it has no meaning to us at this point in time
\ and processing it might mess things up.
CLI,
DDRB DATA SBI,
R20 Z+ LD,
FLBL, L3 \ RCALL checkBoundsZ
R16 R8 LDI,

222 3 AVR

B335
BEGIN,
 PORTB DATA CBI,
 R20 7 SBRC, \ if leftmost bit isn't cleared, set DATA high
 PORTB DATA SBI,
 \ toggle CP
 PORTB CP CBI, R20 LSL, PORTB CP SBI,
 R16 DEC,
' BRNE AGAIN?, \ not zero yet? loop
\ release PS/2
DDRB DATA CBI,
SEI,
\ Reset the latch to indicate that the next number is ready
PORTB LR SBI,
PORTB LR CBI,
' RJMP L1 LBL, \ loop

B336
' RCALL L2 TO, ' RCALL L4 TO, LBL! L2 \ resetTimer
R16 TIMER_INITVAL LDI,
TCNT0 R16 OUT,
R16 $02 (TOV0) LDI,
TIFR R16 OUT,
RET,

B337
' RCALL L6 TO, \ sendToPS2
\ Send the value of r19 to the PS/2 keyboard
CLI,
\ First, indicate our request to send by holding both Clock low
\ for 100us, then pull Data low lines low for 100us.
PORTB CLK CBI,
DDRB CLK SBI,
' RCALL L2 LBL, \ resetTimer
\ Wait until the timer overflows
BEGIN, R16 TIFR IN, R16 1 (TOV0) SBRS, AGAIN,
\ Good, 100us passed.
\ Pull Data low, that's our start bit.
PORTB DATA CBI,
DDRB DATA SBI,

3.5 SMS PS/2 controller: 320-342 223

B338
\ Now, let's release the clock. At the next raising edge, we'll
\ be expected to have set up our first bit (LSB). We set up
\ when CLK is low.
DDRB CLK CBI, \ Should be starting high now.
R16 8 LDI, \ We will do the next loop 8 times
R1 R19 MOV, \ Let's remember initial r19 for parity
BEGIN,
 BEGIN, PINB CLK SBIC, AGAIN, \ Wait for CLK to go low
 PORTB DATA CBI, \ set up DATA
 R19 0 SBRC, \ skip if LSB is clear
 PORTB DATA SBI,
 R19 LSR,
 \ Wait for CLK to go high
 BEGIN, PINB CLK SBIS, AGAIN,
 16 DEC,
' BRNE AGAIN?, \ not zero? loop

B339
\ Data was sent, CLK is high. Let's send parity
R19 R1 MOV, \ recall saved value
FLBL, L6 \ RCALL checkParity
BEGIN, PINB CLK SBIC, AGAIN, \ Wait for CLK to go low
\ set parity bit
PORTB DATA CBI,
R16 0 SBRC, \ parity bit in r16
PORTB DATA SBI,
BEGIN, PINB CLK SBIS, AGAIN, \ Wait for CLK to go high
BEGIN, PINB CLK SBIC, AGAIN, \ Wait for CLK to go low
\ We can now release the DATA line
DDRB DATA CBI,
\ Wait for DATA to go low, that's our ACK
BEGIN, PINB DATA SBIC, AGAIN,
BEGIN, PINB CLK SBIC, AGAIN, \ Wait for CLK to go low

B340
\ We're finished! Enable INT0, reset timer, everything back to
\ normal!
' RCALL L2 LBL, \ resetTimer
CLT, \ also, make sure T isn't mistakely set.
SEI,
RET,

224 3 AVR

B341
' RCALL L8 TO, \ checkBoundsY
\ Check that Y is within bounds, reset to SRAM_START if not.
YL TST,
IF, RET, (not zero, nothing to do) THEN,
\ YL is zero. Reset Z
YH CLR, YL SRAM_START <<8 >>8 LDI,
RET,
' RCALL L3 TO, \ checkBoundsZ
\ Check that Z is within bounds, reset to SRAM_START if not.
ZL TST,
IF, RET, (not zero, nothing to do) THEN,
\ ZL is zero. Reset Z
ZH CLR, ZL SRAM_START <<8 >>8 LDI,
RET,

B342
' RCALL L5 TO, ' RCALL L6 TO, \ checkParity
\ Counts the number of 1s in r19 and set r16 to 1 if there's an
\ even number of 1s, 0 if they're odd.
R16 1 LDI,
BEGIN,
 R19 LSR,
 ' BRCC SKIP, R16 INC, (carry set? we had a 1) TO,
 R19 TST, \ is r19 zero yet?
' BRNE AGAIN?, \ no? loop
R16 $1 ANDI,
RET,

3.6 Arduino blinker: 345

B345
\ A simple LED blinker on the Arduino Uno
\ To test the assembler mechanism. Requires ATMEGA328P.
DDRB 5 SBI, PORTB 5 CBI,
R16 $05 LDI, \ 1024 prescaler, CS00+CS02
TCCR0B R16 OUT,
R1 CLR, \ initialize overflow counter
BEGIN,
 R16 TIFR0 IN,
 R16 0 (TOV0) SBRS, DUP AGAIN, \ no overflow
 R16 $01 LDI, TIFR0 R16 OUT,
 R1 INC,
 PORTB 5 CBI,
 R1 7 SBRS, PORTB 5 SBI, \ LED is on
AGAIN,

3.7 Arduino SPI spitter: 350-351 225

3.7 Arduino SPI spitter: 350-351

B350
\ Arduino SPI Spitter. See doc/hw/avr/spispit
103 CONSTANT BAUD_PRESCALE \ 9600 bauds at 16 MHz
R16 $80 LDI, R17 $04 LDI, CLKPR R16 STS, CLKPR R17 STS, \ x16
R16 BAUD_PRESCALE >>8 LDI, UBRR0H R16 STS,
R16 BAUD_PRESCALE <<8 >>8 LDI, UBRR0L R16 STS,
R16 $08 LDI, UCSR0B R16 STS, \ TXEN0
R16 CLR, PORTB R16 OUT,
R16 $2c LDI, DDRB R16 OUT, \ MOSI+SCK+SS/PB5+PB3+PB2
R16 $53 LDI, SPCR R16 OUT, \ SPE+MSTR+f_osc/128
ZH 0 LDI, ZL $ff LDI,
R1 Z+ LPM, \ number of 0x100 bytes blocks

B351
BEGIN, \ main loop
 R16 Z+ LPM, SPDR R16 OUT,
 BEGIN, R16 SPSR IN, R16 7 (SPIF) SBRS, AGAIN,
 BEGIN, R16 UCSR0A LDS, R16 5 (UDRE0) SBRS, AGAIN,
 R16 SPDR IN, UDR0 R16 STS,
 ZL TST, ' BRNE SKIP, R1 DEC, TO,
 R1 TST, ' BRNE AGAIN?, \ end main
R16 $00 LDI, UCSR0B R16 STS, \ Disable UART
BEGIN, AGAIN, \ end program

226 4 8086

4 8086

4.1 Architecture index: 300

B300
: C>!, BX 0 MOVxI, BL 0 ADCi,
8086 MASTER INDEX

301 8086 boot code 306 8086 HAL
311 8086 assembler 320 8086 drivers

4.2 8086 boot code: 301-309

B301
\ 8086 macros
: 8086A 5 LOAD (wordtbl) 311 318 LOADR 7 LOAD (Flow) ;
: 8086C 302 309 LOADR ;

B302
\ 8086 boot code. PS=SP, RS=BP, IP=DX, TOS=BX
FJR JRi, TO L1 (main) \ 03=boot driveno
10 ALLOT0 \ End of Stable ABI
L1 FMARK (main) DX POPx, (boot drive no) $03 DL MOVmr,
 SP PS_ADDR MOVxI, BP RS_ADDR MOVxI,
 DI $04 (BOOT) MOVxm, DI JMPr,
LSET lblval DI POPx, BX PUSHx, BX [DI] x[] MOV[], \ to next
LSET lblnext DI DX MOVxx, (<-- IP) DX INCx, DX INCx,
 DI [DI] x[] MOV[], DI JMPr,
LSET lblcell AX POPx, BX PUSHx, BX AX MOVxx, lblnext BR JRi,
LSET lblxt BP INCx, BP INCx, [BP] 0 DX []+x MOV[], (pushRS)
 DX POPx, lblnext BR JRi,
LSET lbldoes DI POPx, BX PUSHx, BX DI MOVxx, BX INCx, BX INCx,
 DI [DI] x[] MOV[], DI JMPr,

4.2 8086 boot code: 301-309 227

B303
CODE EXIT DX [BP] 0 x[]+ MOV[], BP DECx, BP DECx, ;CODE
CODE []= (a1 a2 u -- f) CX BX MOVxx, SI POPx, DI POPx,
 CLD, REPZ, CMPSB, BX 0 MOVxI, IFZ, BX INCx, THEN, ;CODE
CODE [C]? (c a u -- i) CX BX MOVxx, DI POPx, AX POPx,
 CLD, REPNZ, SCASB, IFNZ, CX BX MOVxx, THEN,
 BX CX SUBxx, BX DECx, ;CODE
CODE QUIT LSET L1 (used in ABORT)
 BP RS_ADDR MOVxI, DI $0a (main) MOVxm, DI JMPr,
CODE ABORT SP PS_ADDR MOVxI, L1 BR JRi,
CODE BYE HLT, BEGIN, BR JRi,

B304
CODE FIND (sa sl -- w? f) CX BX MOVxx, SI POPx,
 DI SYSVARS $2 (CURRENT) + MOVxm,
 BEGIN, (loop)
 AL [DI] -1 r[]+ MOV[], $7f ANDALi, (strlen)
 CL AL CMPrr, IFZ, (same len)
 SI PUSHx, DI PUSHx, CX PUSHx, (-->)
 3 ADDALi, (header) AH AH XORrr, DI AX SUBxx,
 CLD, REPZ, CMPSB,
 CX POPx, DI POPx, SI POPx, (<--)
 IFZ, DI PUSHx, BX 1 MOVxI, ;CODE THEN,
 THEN,
 DI [x] 3 SUB[]i, DI [DI] x[] MOV[], (prev) DI DI ORxx,
 BR JRNZi, (loop) BX BX XORxx, ;CODE

B305
CODE * AX POPx, DX PUSHx, (protect from MUL) BX MULx, DX POPx,
 BX AX MOVxx, ;CODE
CODE /MOD AX POPx, DX PUSHx, (protect)
 DX DX XORxx, BX DIVx,
 BX DX MOVxx, DX POPx, (unprotect)
 BX PUSHx, (modulo) BX AX MOVxx, (division) ;CODE
CODE RCNT
 BX PUSHx, BX BP MOVxx, AX RS_ADDR MOVxI, BX AX SUBxx, ;CODE
CODE SCNT
 AX PS_ADDR MOVxI, AX SP SUBxx, BX PUSHx, BX AX MOVxx, ;CODE
CODE TICKS (n=100us) BX PUSHx,
 SI DX MOVxx, (protect IP)
 AX POPx, BX 100 MOVxI, BX MULx,
 CX DX MOVxx, (high) DX AX MOVxx, (low)
 AX $8600 MOVxI, (86h, WAIT) $15 INT,
 DX SI MOVxx, (restore IP) BX POPx, ;CODE

228 4 8086

B306
CODE (n)
 BX PUSHx, DI DX MOVxx, BX [DI] x[] MOV[],
 DX INCx, DX INCx, ;CODE
CODE (b)
 BX PUSHx, DI DX MOVxx, BH BH XORrr, BL [DI] r[] MOV[],
 DX INCx, ;CODE
CODE (br) LSET L1 (used in ?br)
 DI DX MOVxx, AL [DI] r[] MOV[], AH AH XORrr, CBW,
 DX AX ADDxx, ;CODE
CODE (?br)
 BX BX ORxx, BX POPx, L1 BR JRZi, DX INCx, ;CODE
CODE (next)
 [BP] 0 [w]+ DEC[], L1 BR JRNZi,
 BP DECx, BP DECx, DX INCx, ;CODE

B307
CODE + AX POPx, BX AX ADDxx, ;CODE
CODE - AX POPx, AX BX SUBxx, BX AX MOVxx, ;CODE
CODE < AX POPx, CX CX XORxx, AX BX CMPxx, IFC, CX INCx, THEN,
 BX CX MOVxx, ;CODE
CODE 1+ BX INCx, ;CODE
CODE 1- BX DECx, ;CODE
CODE AND AX POPx, BX AX ANDxx, ;CODE
CODE OR AX POPx, BX AX ORxx, ;CODE
CODE XOR AX POPx, BX AX XORxx, ;CODE
CODE NOT BX BX ORxx, BX 0 MOVxI, IFZ, BX INCx, THEN, ;CODE
CODE >> BX SHRx1, ;CODE
CODE << BX SHLx1, ;CODE
CODE >>8 BL BH MOVrr, BH BH XORrr, ;CODE
CODE <<8 BH BL MOVrr, BL BL XORrr, ;CODE

B308
CODE R@ BX PUSHx, BX [BP] 0 x[]+ MOV[], ;CODE
CODE R~ BP DECx, BP DECx, ;CODE
CODE R> BX PUSHx, BX [BP] 0 x[]+ MOV[], BP DECx, BP DECx, ;CODE
CODE >R BP INCx, BP INCx, [BP] 0 BX []+x MOV[], BX POPx, ;CODE
CODE ROT (a b c -- b c a) (BX=c) CX POPx, (b) AX POPx, \ a
 CX PUSHx, BX PUSHx, BX AX MOVxx, ;CODE
CODE ROT> (a b c -- c a b) CX POPx, AX POPx,
 BX PUSHx, AX PUSHx, BX CX MOVxx, ;CODE
CODE DUP LSET L1 BX PUSHx, ;CODE
CODE ?DUP AX BX MOVxx, AX AX ORxx, L1 BR JRNZi, ;CODE
CODE OVER (a b -- a b a)
 AX POPx, AX PUSHx, BX PUSHx, BX AX MOVxx, ;CODE
CODE SWAP AX BX MOVxx, BX POPx, AX PUSHx, ;CODE
CODE DROP BX POPx, ;CODE
CODE EXECUTE AX BX MOVxx, BX POPx, AX JMPr,

4.2 8086 boot code: 301-309 229

B309
CODE C@ DI BX MOVxx, BH BH XORrr, BL [DI] r[] MOV[], ;CODE
CODE @ DI BX MOVxx, BX [DI] x[] MOV[], ;CODE
CODE C! DI BX MOVxx, CX POPx, [DI] CL []r MOV[], BX POPx, ;CODE
CODE ! DI BX MOVxx, CX POPx, [DI] CX []x MOV[], BX POPx, ;CODE
CODE JMPi! (pc a -- len) DI BX MOVxx, AX POPx,
 CL $e9 MOVri, LSET L1 [DI] CL []r MOV[],
 CX SYSVARS $4 (HOME) + MOVxm, AX CX SUBxx, AX DECx, AX DECx,
 AX DECx, [DI] 1 AX []+x MOV[], BX 3 MOVxI, ;CODE
CODE CALLi! (pc a -- len) DI BX MOVxx, AX POPx,
 CL $e8 MOVri, L1 BR JRi,
CODE i>! (i a -- len) DI BX MOVxx, AX POPx,
 CX $bb53 MOVxI, (push bx;mov bx,nn) [DI] CX []x MOV[],
 [DI] 2 AX []+x MOV[], BX 4 MOVxI, ;CODE

4.3 8086 assembler: 311-318

B311
\ 8086 assembler. See doc/asm
28 CONSTS 0 AL 1 CL 2 DL 3 BL
 4 AH 5 CH 6 DH 7 BH
 0 AX 1 CX 2 DX 3 BX
 4 SP 5 BP 6 SI 7 DI
 0 ES 1 CS 2 SS 3 DS
 0 [BX+SI] 1 [BX+DI] 2 [BP+SI] 3 [BP+DI]
 4 [SI] 5 [DI] 6 [BP] 7 [BX]
: <<3 << << << ;

B312
: OP1 DOER C, DOES> C@ C, ;
$c3 OP1 RET, $fa OP1 CLI, $fb OP1 STI,
$f4 OP1 HLT, $fc OP1 CLD, $fd OP1 STD,
$90 OP1 NOP, $98 OP1 CBW,
$f3 OP1 REPZ, $f2 OP1 REPNZ, $ac OP1 LODSB,
$ad OP1 LODSW, $a6 OP1 CMPSB, $a7 OP1 CMPSW,
$a4 OP1 MOVSB, $a5 OP1 MOVSW, $ae OP1 SCASB,
$af OP1 SCASW, $aa OP1 STOSB, $ab OP1 STOSW,

: OP1r DOER C, DOES> C@ + C, ;
$40 OP1r INCx, $48 OP1r DECx,
$58 OP1r POPx, $50 OP1r PUSHx,

230 4 8086

B313
: OPr0 (reg op) DOER C, C, DOES>
 C@+ C, C@ <<3 OR $c0 OR C, ;
0 $d0 OPr0 ROLr1, 0 $d1 OPr0 ROLx1, 4 $f6 OPr0 MULr,
1 $d0 OPr0 RORr1, 1 $d1 OPr0 RORx1, 4 $f7 OPr0 MULx,
4 $d0 OPr0 SHLr1, 4 $d1 OPr0 SHLx1, 6 $f6 OPr0 DIVr,
5 $d0 OPr0 SHRr1, 5 $d1 OPr0 SHRx1, 6 $f7 OPr0 DIVx,
0 $d2 OPr0 ROLrCL, 0 $d3 OPr0 ROLxCL, 1 $fe OPr0 DECr,
1 $d2 OPr0 RORrCL, 1 $d3 OPr0 RORxCL, 0 $fe OPr0 INCr,
4 $d2 OPr0 SHLrCL, 4 $d3 OPr0 SHLxCL,
5 $d2 OPr0 SHRrCL, 5 $d3 OPr0 SHRxCL,

B314
: OPrr DOER C, DOES> C@ C, <<3 OR $c0 OR C, ;
$31 OPrr XORxx, $30 OPrr XORrr,
$88 OPrr MOVrr, $89 OPrr MOVxx, $28 OPrr SUBrr,
$29 OPrr SUBxx, $08 OPrr ORrr, $09 OPrr ORxx,
$38 OPrr CMPrr, $39 OPrr CMPxx, $00 OPrr ADDrr,
$01 OPrr ADDxx, $12 OPrr ADCrr, $13 OPrr ADCxx,
$20 OPrr ANDrr, $21 OPrr ANDxx,

B315
4 WORDTBL mods 'W NOOP 'W C, 'W L, 'W NOOP
: modrm (disp? modrm --)
 DUP C, DUP $c7 AND 6 = IF DROP $80 THEN 64 / mods SWAP WEXEC ;
: OP[] (opbase+modrmbase) DOER , DOES>
 @ L|M (disp? modrm opoff modrmbase op) ROT + C, + modrm ;
(-- disp? modrm opoff)
: [b] (r/m) 0 ; : [w] (r/m) 1 ;
: [m] (a) 6 0 ; : [M] [m] 1+ ;
: [r] (r) $c0 OR 0 ; : [x] [r] 1+ ;
: [b]+ (r/m disp8) SWAP $40 OR 0 ; : [w]+ [b]+ 1+ ;
: r[] (r r/m) SWAP <<3 OR 2 ; : x[] r[] 1+ ;
: []r (r/m r) <<3 OR 0 ; : []x []r 1+ ;
: r[]+ (r r/m disp8)
 ROT <<3 ROT OR $40 OR 2 ; : x[]+ r[]+ 1+ ;
: []+r (r/m disp8 r) <<3 ROT OR $40 OR 0 ; : []+x []+r 1+ ;

4.3 8086 assembler: 311-318 231

B316
$fe00 OP[] INC[], $fe08 OP[] DEC[],
$fe30 OP[] PUSH[], $8e00 OP[] POP[],
$8800 OP[] MOV[], $3800 OP[] CMP[],

: OP[]i (opbase+modrmbase) DOER , DOES> SWAP >R (i)
 SWAP (opoff) DUP IF R@ >>8 NOT IF 2 + THEN THEN >R
 @ L|M (disp? modrm modrmbase op)
 R@ + C, + modrm R> 1 = IF R> L, ELSE R> C, THEN ;
$8000 OP[]i ADD[]i, $8010 OP[]i ADC[]i,
$8038 OP[]i CMP[]i, $8028 OP[]i SUB[]i,

: OPI DOER C, DOES> C@ C, L, ;
$05 OPI ADDAXI, $15 OPI ADCALI, $25 OPI ANDAXI,
$2d OPI SUBAXI, $a1 OPI MOVAXm, $a3 OPI MOVmAX,

B317
: OPi DOER C, DOES> C@ C, C, ;
$04 OPi ADDALi, $14 OPi ADCALi, $24 OPi ANDALi,
$2c OPi SUBALi, $cd OPi INT,
$eb OPi JRi, $74 OPi JRZi,
$75 OPi JRNZi, $72 OPi JRCi, $73 OPi JRNCi,
$a0 OPi MOVALm, $a2 OPi MOVmAL,
: MOVri, SWAP $b0 OR C, C, ; : MOVxI, SWAP $b8 OR C, L, ;
: MOVsx, $8e C, SWAP <<3 OR $c0 OR C, ;
: MOVrm, $8a C, SWAP <<3 $6 OR C, L, ;
: MOVxm, $8b C, SWAP <<3 $6 OR C, L, ;
: MOVmr, $88 C, <<3 $6 OR C, L, ;
: MOVmx, $89 C, <<3 $6 OR C, L, ;
: PUSHs, <<3 $06 OR C, ; : POPs, <<3 $07 OR C, ;
: JMPr, $ff C, 7 AND $e0 OR C, ;
: JMPf, (seg off) $ea C, L, L, ;

B318
: JMPi, $e9 C, (jmp near) PC - 2 - L, ;
: CALLi, $e8 C, (jmp near) PC - 2 - L, ;
: i>, BX PUSHx, BX SWAP MOVxI, ;
: JMP(i), MOVAXm, AX JMPr, ;
: (i)>, BX PUSHx, BX SWAP MOVxm, ;

232 4 8086

4.4 8086 drivers: 320-324

B320
(PC/AT drivers. Load range: 320-326)
CODE (key?)
 BX PUSHx, BX BX XORxx, AH 1 MOVri, $16 INT, IFNZ,
 AH AH XORrr, $16 INT, AH AH XORrr, BX INCx, AX PUSHx, THEN,
;CODE

B321
CODE 13H08H (driveno -- cx dx)
 DX PUSHx, (protect) DX BX MOVxx, AX $800 MOVxI,
 ES PUSHs, DI DI XORxx, ES DI MOVsx,
 $13 INT, BX DX MOVxx, ES POPs, DX POPx, (unprotect)
 CX PUSHx, ;CODE
CODE 13H (ax bx cx dx -- ax bx cx dx)
 SI BX MOVxx, (DX) CX POPx, BX POPx, AX POPx,
 DX PUSHx, (protect) DX SI MOVxx, DI DI XORxx,
 $13 INT, SI DX MOVxx, DX POPx, (unprotect)
 AX PUSHx, BX PUSHx, CX PUSHx, BX SI MOVxx, ;CODE

B322
DRV_ADDR CONSTANT FDSPT
DRV_ADDR 1+ CONSTANT FDHEADS
:~ (AX BX sec)
 (AH=read sectors, AL=1 sector, BX=dest,
 CH=trackno CL=secno DH=head DL=drive)
 FDSPT C@ /MOD (AX BX sec trk)
 FDHEADS C@ /MOD (AX BX sec head trk)
 <<8 ROT OR 1+ (AX BX head CX)
 SWAP <<8 $03 C@ (boot drive) OR (AX BX CX DX)
 13H 2DROP 2DROP ;

4.4 8086 drivers: 320-324 233

B323
\ Sectors are 512b, so blk numbers are all x2. We add 16 to
\ this because blkfs starts at sector 16.
: FD@ (blkno blk(--)
 SWAP << (2*) 16 + 2DUP (a b a b)
 $0201 ROT> (a b c a b) ~ (a b)
 1+ SWAP $200 + SWAP $0201 ROT> (c a b) ~ ;
: FD! (blkno blk(--)
 SWAP << (2*) 16 + 2DUP (a b a b)
 $0301 ROT> (a b c a b) ~ (a b)
 1+ SWAP $200 + SWAP $0301 ROT> (c a b) ~ ;
: FD$
\ get number of sectors per track with command 08H.
 $03 (boot drive) C@ 13H08H
 >>8 1+ FDHEADS C!
 $3f AND FDSPT C! ;

B324
2 CONSTS 80 COLS 25 LINES
CODE CURSOR! (new old) AX POPx, (new) DX PUSHx, (protect)
 BX 80 MOVxI, DX DX XORxx, BX DIVx, (col in DL, row in AL)
 DH AL MOVrr, AH 2 MOVri,
 $10 INT, DX POPx, (unprotect) BX POPx, ;CODE
CODE _ (c --) \ char out
 AL BL MOVrr, BX POPx, AH $0e MOVri, $10 INT, ;CODE
: CELL! (c pos --) 0 CURSOR! _ ;
: NEWLN (old -- new) 1+ DUP LINES = IF 1- CR ~ LF ~ THEN ;

5 6809

5.1 Architecture index: 300

B300
6809 MASTER INDEX

301 6809 macros 302 6809 boot code
306 6809 HAL 311 6809 assembler
320 TRS-80 Color Computer 2
325 6809 disassembler 340 6809 emulator
360 Virgil's workspace

234 5 6809

5.2 6809 macros: 301

B301
(6809 declarations)
: 6809A 310 318 LOADR 7 LOAD (flow) ;
: 6809C 302 308 LOADR ;
: 6809D 325 335 LOADR ; : 6809E 340 354 LOADR ;
: COCO2 320 LOAD 322 324 LOADR ;
: DGN32 321 LOAD 322 324 LOADR ;

5.3 6809 boot code: 302-305

B302
(6809 Boot code. IP=Y, PS=S, RS=U)
FJR JRi, TO L1 (main) $0a ALLOT0
\ end of stable ABI
L1 FMARK (main) PS_ADDR # LDS, RS_ADDR # LDU,
BIN(4 + (BOOT) () LDX, X+0 JMP,
LSET lblval [S+0] LDD, S+0 STD, \ to next
LSET lblcell LSET lblnext Y++ LDX, X+0 JMP,
LSET lblxt U++ STY, (IP->RS) PULS, Y lblnext BR JRi,
LSET lbldoes [S+0] LDX, 2 # LDD, S+0 ADDD, S+0 STD, X+0 JMP,
CODE QUIT LSET L1 (for ABORT) RS_ADDR # LDU,
 BIN($0a + (main) () LDX, X+0 JMP,
CODE ABORT PS_ADDR # LDS, L1 BR JRi,
CODE BYE BEGIN, BR JRi,
CODE EXIT --U LDY, ;CODE
CODE EXECUTE PULS, X X+0 JMP,

B303
CODE SCNT PS_ADDR # LDD, 0 <> STS, 0 <> SUBD, PSHS, D ;CODE
CODE RCNT
 RS_ADDR # LDD, 0 <> STD, U D TFR, 0 <> SUBD, PSHS, D ;CODE
CODE @ [S+0] LDD, S+0 STD, ;CODE
CODE C@ [S+0] LDB, CLRA, S+0 STD, ;CODE
CODE ! PULS, X PULS, D X+0 STD, ;CODE
CODE C! PULS, X PULS, D X+0 STB, ;CODE
LSET L1 (PUSH Z) CCR B TFR, LSRB, LSRB,
 1 # ANDB, CLRA, S+0 STD, ;CODE
CODE = PULS, D S+0 CMPD, L1 BR BRA, (PUSH Z)
CODE NOT S+0 LDB, 1 S+N ORB, L1 BR BRA, (PUSH Z)
CODE <
 2 S+N LDD, S++ CMPD, CCR B TFR, 1 # ANDB, CLRA, S+0 STD, ;CODE

5.3 6809 boot code: 302-305 235

B304
CODE /MOD (a b -- a/b a%b)
 16 # LDA, 0 <> STA, CLRA, CLRB, (D=running rem) BEGIN,
 1 # ORCC, 3 S+N ROL, (a lsb) 2 S+N ROL, (a msb)
 ROLB, ROLA, S+0 SUBD,
 FJR BHS, (if <) S+0 ADDD, 3 S+N DEC, (a lsb) THEN,
 0 <> DEC, BR JRNZi,
 2 S+N LDX, 2 S+N STD, (rem) S+0 STX, (quotient) ;CODE
CODE * (a b -- a*b)
 S+0 (bm) LDA, 3 S+N (al) LDB, MUL, S+0 (bm) STB,
 2 S+N (am) LDA, 1 S+N (bl) LDB, MUL,
 S+0 (bm) ADDB, S+0 STB,
 1 S+N (al) LDA, 3 S+N (bl) LDB, MUL,
 S++ ADDA, S+0 STD, ;CODE

B305
LSET L1 (X=s1 Y=s2 B=cnt) BEGIN,
 X+ LDA, Y+ CMPA, IFNZ, RTS, THEN, DECB, BR JRNZi, RTS,
CODE []= (a1 a2 u -- f TODO: allow u>$ff)
 0 <> STY, PULS, DXY (B=u, X=a2, Y=a1) L1 () JSR,
 IFZ, 1 # LDD, ELSE, CLRA, CLRB, THEN, PSHS, D 0 <> LDY, ;CODE
CODE FIND (sa sl -- w? f)
 SYSVARS $02 + (CURRENT) () LDX,
 0 <> STY, PULS, D 2 <> STB, BEGIN,
 -X LDB, $7f # ANDB, --X TST, 2 <> CMPB, IFZ,
 3 <> STX, S+0 LDY, NEGB, X+B LEAX, NEGB, L1 () JSR,
 IFZ, (match) 0 <> LDY, 3 <> LDD, 3 # ADDD, S+0 STD,
 1 # LDD, PSHS, D ;CODE THEN,
 3 <> LDX, THEN, \ nomatch, X=prev
 X+0 LDX, BR JRNZi, \ not zero, loop
 (end of dict) 0 <> LDY, S+0 STX, (X=0) ;CODE

5.4 6809 HAL: 306-310

B306
CODE AND PULS, D S+0 ANDA, 1 S+N ANDB, S+0 STD, ;CODE
CODE OR PULS, D S+0 ORA, 1 S+N ORB, S+0 STD, ;CODE
CODE XOR PULS, D S+0 EORA, 1 S+N EORB, S+0 STD, ;CODE
CODE + PULS, D S+0 ADDD, S+0 STD, ;CODE
CODE - 2 S+N LDD, S++ SUBD, S+0 STD, ;CODE
CODE 1+ 1 S+N INC, IFZ, S+0 INC, THEN, ;CODE
CODE 1- 1 S+N TST, IFZ, S+0 DEC, THEN, 1 S+N DEC, ;CODE
CODE << 1 S+N LSL, S+0 ROL, ;CODE
CODE >> S+0 LSR, 1 S+N ROR, ;CODE
CODE <<8 1 S+N LDA, S+0 STA, 1 S+N CLR, ;CODE
CODE >>8 S+0 LDA, 1 S+N STA, S+0 CLR, ;CODE

236 5 6809

B307
CODE R@ -2 U+N LDD, PSHS, D ;CODE
CODE R~ --U TST, ;CODE
CODE R> --U LDD, PSHS, D ;CODE
CODE >R PULS, D U++ STD, ;CODE
CODE DROP 2 S+N LEAS, ;CODE
CODE DUP (a -- a a) S+0 LDD, PSHS, D ;CODE
CODE ?DUP (a -- a? a) S+0 LDD, IFNZ, PSHS, D THEN, ;CODE
CODE SWAP (a b -- b a)
 S+0 LDD, 2 S+N LDX, S+0 STX, 2 S+N STD, ;CODE
CODE OVER (a b -- a b a) 2 S+N LDD, PSHS, D ;CODE
CODE ROT (a b c -- b c a)
 4 S+N LDX, (a) 2 S+N LDD, (b) 4 S+N STD, S+0 LDD, (c)
 2 S+N STD, S+0 STX, ;CODE
CODE ROT> (a b c -- c a b)
 S+0 LDX, (c) 2 S+N LDD, (b) S+0 STD, 4 S+N LDD, (a)
 2 S+N STD, 4 S+N STX, ;CODE

B308
CODE (b) Y+ LDB, CLRA, PSHS, D ;CODE
CODE (n) Y++ LDD, PSHS, D ;CODE
CODE (br) LSET L1 Y+0 LDA, Y+A LEAY, ;CODE
CODE (?br) S+ LDA, S+ ORA, L1 BR JRZi, Y+ TST, ;CODE
CODE (next) --U LDD, 1 # SUBD, IFNZ,
 U++ STD, L1 BR JRi, THEN, Y+ TST, ;CODE
CODE JMPi! (pc a -- len) \ TODO: test this
 $7e # LDA, LSET L1 PULS, X X+ STA, S+0 LDD, X+0 STD,
 3 # LDD, S+0 STD, ;CODE
CODE CALLi! $bd # LDA, L1 BR BRA,
CODE i>! (i a -- len)
 $cc # LDA, (ldd nn) PULS, X X+ STA, S+0 LDD, X++ STD,
 $3406 # LDD, (pshs d) X+0 STD, 5 # LDD, S+0 STD, ;CODE

B310
\ 6809 assembler. See doc/asm.txt.
'? BIGEND? [IF] 1 TO BIGEND? [THEN]
: <<3 << << << ; : <<4 <<3 << ;
\ For TFR/EXG
10 CONSTS 0 D 1 X 2 Y 3 U 4 S 5 PCR 8 A 9 B 10 CCR 11 DPR
\ Addressing modes. output: n3? n2? n1 nc opoff
: # (n) 1 0 ; \ Immediate
: <> (n) 1 $10 ; \ Direct
: () (n) L|M 2 $30 ; \ Extended
: [] (n) L|M $9f 3 $20 ; \ Extended Indirect
\ Offset Indexed. We auto-detect 0, 5-bit, 8-bit, 16-bit
: _0? ?DUP IF 1 ELSE $84 1 0 THEN ;
: _5? DUP $10 + $1f > IF 1 ELSE $1f AND 1 0 THEN ;
: _8? DUP $80 + $ff > IF 1 ELSE <<8 >>8 $88 2 0 THEN ;
: _16 L|M $89 3 ;

5.5 6809 assembler: 311-318 237

5.5 6809 assembler: 311-318

B311
: R+N DOER C, DOES> C@ (roff) >R
 _0? IF _5? IF _8? IF _16 THEN THEN THEN
 SWAP R> (roff) OR SWAP $20 ;
: R+K DOER C, DOES> C@ 1 $20 ;
: PCR+N (n) _8? IF _16 THEN SWAP $8c OR SWAP $20 ;
: [R+N] DOER C, DOES> C@ $10 OR (roff) >R
 _0? IF _8? IF _16 THEN THEN SWAP R> OR SWAP $20 ;
: [PCR+N] (n) _8? IF _16 THEN SWAP $9c OR SWAP $20 ;
0 R+N X+N $20 R+N Y+N $40 R+N U+N $60 R+N S+N
: X+0 0 X+N ; : Y+0 0 Y+N ; : S+0 0 S+N ; : U+0 0 S+N ;
0 [R+N] [X+N] $20 [R+N] [Y+N]
$40 [R+N] [U+N] $60 [R+N] [S+N]
: [X+0] 0 [X+N] ; : [Y+0] 0 [Y+N] ;
: [S+0] 0 [S+N] ; : [U+0] 0 [U+N] ;

B312
$86 R+K X+A $85 R+K X+B $8b R+K X+D
$a6 R+K Y+A $a5 R+K Y+B $ab R+K Y+D
$c6 R+K U+A $c5 R+K U+B $cb R+K U+D
$e6 R+K S+A $e5 R+K S+B $eb R+K S+D
$96 R+K [X+A] $95 R+K [X+B] $9b R+K [X+D]
$b6 R+K [Y+A] $b5 R+K [Y+B] $bb R+K [Y+D]
$d6 R+K [U+A] $d5 R+K [U+B] $db R+K [U+D]
$f6 R+K [S+A] $f5 R+K [S+B] $fb R+K [S+D]
$80 R+K X+ $81 R+K X++ $82 R+K -X $83 R+K --X
$a0 R+K Y+ $a1 R+K Y++ $a2 R+K -Y $a3 R+K --Y
$c0 R+K U+ $c1 R+K U++ $c2 R+K -U $c3 R+K --U
$e0 R+K S+ $e1 R+K S++ $e2 R+K -S $e3 R+K --S
$91 R+K [X++] $93 R+K [--X] $b1 R+K [Y++] $b3 R+K [--Y]
$d1 R+K [U++] $d3 R+K [--U] $f1 R+K [S++] $f3 R+K [--S]

B313
: ,? DUP $ff > IF M, ELSE C, THEN ;
: ,N (cnt) >R BEGIN C, NEXT ;
: OPINH (inherent) DOER , DOES> @ ,? ;
(Targets A or B)
: OP1 DOER , DOES> @ (n2? n1 nc opoff op) + ,? ,N ;
(Targets D/X/Y/S/U. Same as OP1, but spit 2b immediate)
: OP2 DOER , DOES> @ OVER + ,? IF ,N ELSE DROP M, THEN ;
(Targets memory only. opoff scheme is different than OP1/2)
: OPMT DOER , DOES> @
 SWAP $10 - ?DUP IF $50 + + THEN ,? ,N ;
(Targets 2 regs)
: OPRR (src tgt --) DOER C, DOES> C@ C, SWAP <<4 OR C, ;
: OPBR (op1 --) DOER C, DOES> (off --) C@ C, C, ;
: OPLBR (op? --) DOER , DOES> (off --) @ ,? M, ;

238 5 6809

B314
$89 OP1 ADCA, $c9 OP1 ADCB,
$8b OP1 ADDA, $cb OP1 ADDB, $c3 OP2 ADDD,
$84 OP1 ANDA, $c4 OP1 ANDB, $1c OP1 ANDCC,
$48 OPINH ASLA, $58 OPINH ASLB, $08 OPMT ASL,
$47 OPINH ASRA, $57 OPINH ASRB, $07 OPMT ASR,
$4f OPINH CLRA, $5f OPINH CLRB, $0f OPMT CLR,
$81 OP1 CMPA, $c1 OP1 CMPB, $1083 OP2 CMPD,
$118c OP2 CMPS, $1183 OP2 CMPU, $8c OP2 CMPX,
$108c OP2 CMPY,
$43 OPINH COMA, $53 OPINH COMB, $03 OPMT COM,
$3c OP1 CWAI, $19 OPINH DAA,
$4a OPINH DECA, $5a OPINH DECB, $0a OPMT DEC,
$88 OP1 EORA, $c8 OP1 EORB, $1e OPRR EXG,
$4c OPINH INCA, $5c OPINH INCB, $0c OPMT INC,
$0e OPMT JMP, $8d OP1 JSR,

B315
$86 OP1 LDA, $c6 OP1 LDB, $cc OP2 LDD,
$10ce OP2 LDS, $ce OP2 LDU, $8e OP2 LDX,
$108e OP2 LDY,
$12 OP1 LEAS, $13 OP1 LEAU, $10 OP1 LEAX,
$11 OP1 LEAY,
$48 OPINH LSLA, $58 OPINH LSLB, $08 OPMT LSL,
$44 OPINH LSRA, $54 OPINH LSRB, $04 OPMT LSR,
$3d OPINH MUL,
$40 OPINH NEGA, $50 OPINH NEGB, $00 OPMT NEG,
$12 OPINH NOP,
$8a OP1 ORA, $ca OP1 ORB, $1a OP1 ORCC,
$49 OPINH ROLA, $59 OPINH ROLB, $09 OPMT ROL,
$46 OPINH RORA, $56 OPINH RORB, $06 OPMT ROR,
$3b OPINH RTI, $39 OPINH RTS,
$82 OP1 SBCA, $c2 OP1 SBCB,
$1d OPINH SEX,

B316
$87 OP1 STA, $c7 OP1 STB, $cd OP2 STD,
$10cf OP2 STS, $cf OP2 STU, $8f OP2 STX,
$108f OP2 STY,
$80 OP1 SUBA, $c0 OP1 SUBB, $83 OP2 SUBD,
$3f OPINH SWI, $103f OPINH SWI2, $113f OPINH SWI3,
$13 OPINH SYNC, $1f OPRR TFR,
$4d OPINH TSTA, $5d OPINH TSTB, $0d OPMT TST,

$24 OPBR BCC, $1024 OPLBR LBCC, $25 OPBR BCS,
$1025 OPLBR LBCS, $27 OPBR BEQ, $1027 OPLBR LBEQ,
$2c OPBR BGE, $102c OPLBR LBGE, $2e OPBR BGT,
$102e OPLBR LBGT, $22 OPBR BHI, $1022 OPLBR LBHI,
$24 OPBR BHS, $1024 OPLBR LBHS, $2f OPBR BLE,
$102f OPLBR LBLE, $25 OPBR BLO, $1025 OPLBR LBLO,
$23 OPBR BLS, $1023 OPLBR LBLS, $2d OPBR BLT,
$102d OPLBR LBLT, $2b OPBR BMI, $102b OPLBR LBMI,

5.5 6809 assembler: 311-318 239

B317
$26 OPBR BNE, $1026 OPLBR LBNE, $2a OPBR BPL,
$102a OPLBR LBPL, $20 OPBR BRA, $16 OPLBR LBRA,
$21 OPBR BRN, $1021 OPLBR LBRN, $8d OPBR BSR,
$17 OPLBR LBSR, $28 OPBR BVC, $1028 OPLBR LBVC,
$29 OPBR BVS, $1029 OPLBR LBVS,

: _ (r c cref mask -- r c) ROT> OVER = (r mask c f)
 IF ROT> OR SWAP ELSE NIP THEN ;
: OPP DOER C, DOES> C@ C, 0 TOWORD IN> 1- C@ BEGIN (r c)
 '$' $80 _ 'S' $40 _ 'U' $40 _ 'Y' $20 _ 'X' $10 _
 '%' $08 _ 'B' $04 _ 'A' $02 _ 'C' $01 _ 'D' $06 _
 '@' $ff _ DROP IN< DUP WS? UNTIL DROP C, ;
$34 OPP PSHS, $36 OPP PSHU, $35 OPP PULS, $37 OPP PULU,

B318
\ 6809 HAL, flow words. Also used in 6809A
: JMPi, () JMP, ; : CALLi, () JSR, ; : JMP(i), [] JMP, ;
ALIAS BRA, JRi,
ALIAS BEQ, JRZi, ALIAS BNE, JRNZi,
ALIAS BCS, JRCi, ALIAS BCC, JRNCi,
: i>, # LDD, $3406 M, (pshs d) ;
: (i)>, () LDD, $3406 M, (pshs d) ;

5.6 TRS-80 Color Computer 2: 320-324

B320
\ CoCo2 keyboard layout
PC ," @HPX08" CR C, ," AIQY19" 0 C,
 ," BJRZ2:" 0 C, ," CKS_3;" 0 C,
 ," DLT_4," 0 C, ," EMU" BS C, ," 5-" 0 C,
 ," FNV_6." 0 C, ," GOW 7/" 0 C,
 ," @hpx0(" CR C, ," aiqy!)" 0 C,
 ," bjrz" '"' C, '*' C, 0 C, ," cks_#+" 0 C,
 ," dlt_$<" 0 C, ," emu" BS C, ," %=" 0 C,
 ," fnv_&>" 0 C, ," gow '?" 0 C,

240 5 6809

B321
\ Dragon32 keyboard layout
PC ," 08@HPX" CR C, ," 19AIQY" 0 C,
 ," 2:BJRZ" 0 C, ," 3;CKS_" 0 C,
 ," 4,DLT_" 0 C, ," 5-EMU" BS C, 0 C,
 ," 6.FNV_" 0 C, ," 7/GOW " 0 C,
 ," 0(@hpx" CR C, ," !)aiqy" 0 C,
 '"' C, '*' C, ," bjrz" 0 C, ," #+cks_" 0 C,
 ," $<dlt_" 0 C, ," %=emu" BS C, 0 C,
 ," &>fnv_" 0 C, ," '?gow " 0 C,

B322
\ Coco2 keyboard driver
LSET L1 (PC) # LDX, $fe # LDA, BEGIN, (8 times)
 $ff02 () STA, (set col) $ff00 () LDB, (read row)
 (ignore 8th row) $80 # ORB, $7f # CMPA, IFZ,
 (ignore shift row) $40 # ORB, THEN,
 INCB, IFNZ, (key pressed) DECB, RTS, THEN,
 (inc col) 7 X+N LEAX, 1 # ORCC, ROLA, BR JRCi,
 (no key) CLRB, RTS,

B323
\ Coco2 keyboard driver
CODE (key?) (-- c? f) CLRA, CLRB, PSHS, D L1 () JSR,
 IFNZ, (key! row mask in B col ptr in X)
 (is shift pressed?) $7f # LDA, $ff02 () STA,
 $ff00 () LDA, $40 # ANDA, IFZ, (shift!)
 56 X+N LEAX, THEN,
 BEGIN, X+ LDA, LSRB, BR JRCi,
 (A = our char) 1 S+N STA, TSTA, IFNZ, (valid key)
 1 # LDD, (f) PSHS, D (wait for keyup)
 BEGIN, L1 () JSR, BR JRNZi, THEN,
 THEN, ;CODE

5.6 TRS-80 Color Computer 2: 320-324 241

B324
\ Coco2 grid driver
32 CONSTANT COLS 16 CONSTANT LINES
: CELL! (c pos --)
 SWAP $20 - DUP $5f < IF
 DUP $20 < IF $60 + ELSE DUP $40 < IF $20 + ELSE $40 -
 THEN THEN (pos glyph)
 SWAP $400 + C! ELSE 2DROP THEN ;
: CURSOR! (new old --)
 DROP $400 + DUP C@ $40 XOR SWAP C! ;

5.7 6809 disassembler: 325-335

B325
\ 6809 disassembler
\ order below represent opid, alpha order, branches last
CREATE OPNAME ," ABXADCADDANDASLASRBITCLRCMPCOMCWADAA" \ x12
 ," DECEOREXGINCJMPJSR LDLEALSRMULNEGNOP ORPSHPULROL" \ x16
 ," RORRTIRTSSBCSEX STSUBSWISYNTFRTSTBSR" \ x12
 ," BRABRNBHIBLSBCCBCSBNEBEQBVCBVSBPLBMIBGEBLTBGTBLE" \ x16
 ," ???"
56 CONSTANT OPCNT $ff CONSTANT NUL
: >>4 >> >> >> >> ;
: M@+ (a -- a+2 n) C@+ <<8 SWAP C@+ ROT OR ;
: n, (n --) >R BEGIN RUN1 , NEXT ;
: WORDTBL (n --) CREATE >R BEGIN ' , NEXT ;
: opname. (opid --) OPCNT MIN 3 * OPNAME + 3 STYPE ;

B326
\ NEG, COM, LSR, ...
CREATE GRP0 $10 nC, 22 NUL NUL 9 20 NUL 28 5
 4 27 12 NUL 15 38 16 7
\ NOP, SYNC, DAA, ...
CREATE GRP1 $10 nC, NUL NUL 23 36 NUL NUL NUL NUL
 NUL 11 24 NUL 3 32 14 37
\ branches
CREATE GRP2 $10 nC, 40 41 42 43 44 45 46 47
 48 49 50 51 52 53 54 55
\ LEA, PSH, PUL, ...
CREATE GRP3 $10 nC, 19 19 19 19 25 26 25 26
 NUL 30 0 29 10 21 NUL 35
\ SUB, CMP, SBC, ...
CREATE GRP8 $10 nC, 34 8 31 34 3 6 18 NUL
 13 1 24 2 8 39 18 NUL

242 5 6809

B327
\ GRP8 + ST + JSR
CREATE GRP9 $10 nC, 34 8 31 34 3 6 18 33
 13 1 24 2 8 17 18 33
\ SUB, CMP, ADD, ...
CREATE GRPC $10 nC, 34 8 31 2 3 6 18 NUL
 13 1 24 2 8 NUL 18 NUL
\ GRPC + ST
CREATE GRPD $10 nC, 34 8 31 2 3 6 18 33
 13 1 24 2 8 33 18 33
CREATE _ $10 n, GRP0 GRP1 GRP2 GRP3 GRP0 GRP0 GRP0 GRP0
 GRP8 GRP9 GRP9 GRP9 GRPC GRPD GRPD GRPD
: opid (opcode -- opid) DUP >>4 << _ + @ SWAP $f AND + C@ ;

B328
\ tgt id is the same as in TFR/EXG. 2b for each name. $6 is for
\ memory or inherent targets. $c and $d are for SWI
CREATE TGTNAME ," D X Y U S PC ??A B CCDP2 3 ??"
CREATE GRP0 $10 nC, 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
CREATE GRP1 $10 nC, 6 6 6 6 6 6 6 6 6 6 10 6 10 6 6 6
CREATE GRP3 $10 nC, 1 2 4 3 4 4 3 3 6 6 6 6 6 6 6 6
CREATE GRP4 $10 nC, 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
CREATE GRP5 $10 nC, 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
CREATE GRP8 $10 nC, 8 8 8 0 8 8 8 8 8 8 8 8 1 6 1 1
CREATE GRPC $10 nC, 9 9 9 0 9 9 9 9 9 9 9 9 0 0 3 3
CREATE _ $10 n, GRP0 GRP1 GRP0 GRP3 GRP4 GRP5 GRP0 GRP0
 GRP8 GRP8 GRP8 GRP8 GRPC GRPC GRPC GRPC
: tgtid (op -- id) DUP >>4 << _ + @ SWAP $f AND + C@ ;
: tgtwide? (tgtid -- f) 6 < ;
: tgt. (tgtid --) $e MIN << TGTNAME + 2 STYPE ;
: tgt.1 $e MIN << TGTNAME + C@ EMIT ;

B329
\ 6809D, addr modes
\ 0=inh 1=acc 2=imm8 3=rel8 4=zp 5=regTFR 6=regPSH
\ 7=ext 8=ind 8+2=imm16 8+3=rel16
CREATE _ $10 nC, 4 0 3 0 1 1 8 7 2 4 8 7 2 4 8 7
\ $1x and $3x are special
CREATE _1x $10 nC, 0 0 0 0 0 0 9 9 0 0 2 0 2 0 5 5
CREATE _3x $10 nC, 8 8 8 8 6 6 6 6 0 0 0 0 2 0 0 0
: modeid (opcode -- modeid)
 DUP $8d = IF (BSR is special) DROP 3 EXIT THEN
 DUP >>4 DUP 1 = IF DROP $f AND _1x + C@ EXIT THEN
 DUP 3 = IF DROP $f AND _3x + C@ EXIT THEN
 _ + C@ (opcode modeid) DUP 2 = IF (imm wide?)
 SWAP tgtid tgtwide? << << << OR ELSE NIP THEN ;

5.7 6809 disassembler: 325-335 243

B330
\ 6809D, index modes
\ 0=n,R 1=R,R 2=,R+ 3=,R++ 4=,-R 5=,--R 6=n,PC
\ 8=[n,R] 9=[R,R] 11=[,R++] 13=[,--R] 14=[n,PC] 15=iext
CREATE _ 8 nC, $02 $03 $04 $05 $00 $81 $91 $ff
: _1RRi0xxx (n&7 -- off indid) _ + C@ DUP >>4 SWAP $f AND ;
: _nul (a -- a+n off indid) 0 $ff ;
: _b,R C@+ 0 ; : _n,R M@+ 0 ;
: _D,R 0 1 ;
: _b,PC C@+ 6 ; : _n,PC M@+ 6 ;
8 WORDTBL _ _b,R _n,R _nul _D,R _b,PC _n,PC _nul _nul
: _1RRi1xxx (a n&f -- a+n off indid)
 7 AND << _ + @ EXECUTE ;

B331
\ 6809D, index modes
: _R@ (n -- R) $60 AND >>4 >> 1+ ;
\ R is a tgtid, off in R,R is a tgtid, an abs EA in iext.
: ind@ (a -- a+n R off indid) \ *B*
 C@+ >B (a B:n) B> $9e AND $9c = IF (iext)
 B> 1 AND IF M@+ ELSE C@+ THEN 0 SWAP 15 EXIT THEN (a)
 B> $80 AND NOT IF (5b,R) B> _R@ B> $1f AND 0 EXIT THEN (a)
 B> $f AND DUP 7 > IF _1RRi1xxx ELSE _1RRi0xxx THEN
 B> $10 AND >> OR \ apply indirect bit to indid
 (a off indid) B> _R@ ROT> ;

B332
: nSPC> >R BEGIN SPC> NEXT ;
: nul. ." ?????????" ;
: inh. (a -- a+n) 9 nSPC> ; ALIAS inh. acc.
: imm8. '#' EMIT C@+ .x 6 nSPC> ;
: imm16. '#' EMIT M@+ .X 4 nSPC> ;
: zp. '$' EMIT C@+ .x 6 nSPC> ; ALIAS zp. rel8.
: ext. '$' EMIT M@+ .X 4 nSPC> ; ALIAS ext. rel16.
: regTFR. C@+ DUP >>4 tgt. $f AND tgt. 5 nSPC> ;
CREATE _ ," $SYX%BAC"
: regPSH. _ >B C@+ $80 BEGIN 2DUP AND IF B> C@ ELSE SPC THEN
 EMIT B+ >> DUP NOT UNTIL 2DROP SPC> ;

244 5 6809

B333
\ 6809D, index modes printing
\ col width here is 7 instead of 9 in case we add []
: .x? DUP $ff > IF .X ELSE .x SPC> SPC> THEN ;
: _n,R (R off --) SWAP tgt.1 '+' EMIT .x? SPC> ;
: _R,R SWAP tgt.1 '+' EMIT tgt.1 4 nSPC> ;
: _,R+ DROP tgt.1 ." + " ;
: _,R++ DROP tgt.1 ." ++ " ;
: _,-R DROP '-' EMIT tgt.1 5 nSPC> ;
: _,--R DROP '-' EMIT '-' EMIT tgt.1 4 nSPC> ;
: _n,PC ." PC+" .x? DROP ;
: _nul 2DROP ." ???????" ;
8 WORDTBL _ _n,R _R,R _,R+ _,R++ _,-R _,--R _n,PC _nul
: ind. (a -- a+n) ind@ (a R off indid) DUP 7 > IF
 '[' EMIT 7 AND << _ + @ EXECUTE ']' EMIT ELSE
 << _ + @ EXECUTE SPC> SPC> THEN ;

B334
$10 WORDTBL _ inh. acc. imm8. rel8. zp. regTFR. regPSH. ext.
 ind. nul. imm16. ext. nul. nul. nul. nul.
: mode. (a modeid -- a+n) << _ + @ EXECUTE ;
: _opreg. (a opcode -- a a+n *B*)
 DUP opid opname. DUP tgtid tgt. modeid mode. ;
: repl (val tbl -- nval-or-ff *A*) >A BEGIN
 AC@+ 2DUP = IF 2DROP AC@+ EXIT THEN A+ $ff = UNTIL DROP $ff ;
CREATE _ops 11 nC, 35 35 34 8 8 8 18 18 33 33 $ff
CREATE _tgt 9 nC, 6 12 0 0 1 2 3 4 $ff
: _op10. DUP $f0 AND $20 = IF (Lbranch)
 'L' EMIT opid opname. SPC> rel16. ELSE (not Lbranch)
 DUP opid _ops repl opname. DUP tgtid _tgt repl tgt.
 modeid mode. THEN ;

B335
CREATE _ops 7 nC, 35 35 34 8 8 8 $ff
CREATE _tgt 7 nC, 6 13 0 3 1 4 $ff
: _op11. DUP opid _ops repl opname. DUP tgtid _tgt repl tgt.
 modeid mode. ;
: bin. (a1 a2 -- a2)
 SWAP BEGIN C@+ .x SPC> 2DUP = UNTIL DROP ;
: op. (a -- a+n *B*) DUP C@+ DUP $10 = IF DROP C@+ _op10.
 ELSE DUP $11 = IF DROP C@+ _op11. ELSE _opreg. THEN THEN
 SPC> bin. NL> ;
: dis (a --) 20 >R BEGIN op. NEXT DROP ;

5.8 6809 emulator: 340-354 245

5.8 6809 emulator: 340-354

B340
\ mapping: D X Y U S PC CC/DP
CREATE 'D 14 ALLOT
'D CONSTANT 'A 'A 1+ CONSTANT 'B 'D 2 + CONSTANT 'X
'X 2 + CONSTANT 'Y 'Y 2 + CONSTANT 'U 'U 2 + CONSTANT 'S
'S 2 + CONSTANT 'PC 'PC 2 + CONSTANT 'CC 'CC 1+ CONSTANT 'DP
CREATE MEM $800 ALLOT \ 2K ought to be enough for anybody
\ TGT = tgtid. 6=mem
\ EA is in *target* addr
7 VALUES EA WIDE HALT? PAGE TGT VERBOSE 'BRK?
: BRK? 'BRK? DUP IF EXECUTE THEN ;

B341
\ tgtid is from 6809D
CREATE _ $10 n, 'D 'X 'Y 'U 'S 'PC 0 0 'A 'B 'CC 'DP 0 0 0 0
: tgtreg (tgtid -- regaddr)
 $f AND << _ + @ DUP NOT IF ABORT" invalid tgt" THEN ;
: word@ (opcode page -- opword) SWAP $0f AND << + @ ;
: CC@ 'CC C@ ; : CC! 'CC C! ;
: neg? (n -- f) WIDE IF 0< ELSE << >>8 THEN ;
: ZNV! (old new --) <<8 >>8
 (Z?) DUP NOT (old new z) (N?) SWAP neg? (old z n)
 (V? n != oldn) ROT neg? OVER = NOT (z n v)
 << SWAP <<3 OR (z f) SWAP << << OR (f=0000NZV0)
 CC@ $f1 AND OR CC! ;

B342
: W?@ WIDE IF T@ ELSE C@ THEN ;
: W?! WIDE IF T! ELSE C! THEN ;
: signext (b -- n) DUP $7f > IF $ff00 OR THEN ;
: MEM+ (off -- addr) MEM + ;
: PC@ 'PC T@ ; : PC! 'PC T! ;
: PC+ (-- pc) PC@ DUP 1+ PC! ;
: PC@+ (-- b) PC+ MEM+ C@ ;
: PC++ (-- pc) PC@ DUP 2 + PC! ;
: PC@++ (-- n) PC++ MEM+ T@ ;
: PC+n! (n --) PC@ + PC! ; : PC+b! (b --) signext PC+n! ;
: EA@@ EA MEM+ W?@ ; : EA@! EA MEM+ W?! ;
: '<>! (a1 a2 --) OVER W?@ >R DUP W?@ ROT W?! R> SWAP W?! ;

246 5 6809

B343
: push8 'S T@ 1- DUP 'S T! MEM+ C! ;
: push16 DUP >>8 push8 push8 ;
: pull8 'S T@ DUP 1+ 'S T! MEM+ C@ ;
: pull16 pull8 <<8 pull8 OR ;
: carry> (-- f) CC@ $01 AND ;
: >carry (f --) CC@ $fe AND OR CC! ;
: >>CC (b -- b>>1) DUP 1 AND >carry >> ;
: <<CC (b -- b<<1) << DUP $ff > >carry ;
: cpu. ." A B X Y U S PC CC DP" NL>
 'D 6 >R BEGIN DUP T@ .X SPC> 1+ 1+ NEXT DROP
 CC@ .x SPC> 'DP C@ .x NL> ;
: NIL ." invalid opcode " NL> cpu. ABORT ;

B344
\ sig: R off -- ea
: n,R SWAP tgtreg T@ + ;
: R,R tgtreg T@ n,R ;
: ,R+ DROP tgtreg DUP T@ DUP 1+ ROT T! ;
: ,R++ DROP tgtreg DUP T@ DUP 1+ 1+ ROT T! ;
: ,-R DROP tgtreg DUP T@ 1- DUP ROT T! ;
: ,--R DROP tgtreg DUP T@ 1- 1- DUP ROT T! ;
: n,PC NIP 'PC T@ + ;
: [n,R] n,R T@ ; : [R,R] R,R T@ ; : [,R++] ,R++ T@ ;
: [,--R] ,--R T@ ; : [n,PC] n,PC T@ ;
: [n] NIP T@ ;

B345
\ maps indid from 6809D
16 WORDTBL IMODES
 n,R R,R ,R+ ,R++ ,-R ,--R n,PC NIL
 [n,R] [R,R] NIL [,R++] NIL [,--R] [n,PC] [n]
: indexed (a -- a+n)
 ind@ (a+n R off indid) << _ + @ EXECUTE (ea) [TO] EA ;

5.8 6809 emulator: 340-354 247

B346
: nop ;
: imm WIDE IF PC++ ELSE PC+ THEN [TO] EA ;
: direct PC@+ 'DP C@ <<8 + [TO] EA ;
: extended PC@++ [TO] EA ;
16 WORDTBL ADDRS
 direct nop nop nop nop nop indexed extended
 imm direct indexed extended imm direct indexed extended
: setEA (opcode --) >>4 << ADDRS + @ EXECUTE ;
: setTGT (opcode --) tgtid DUP tgtwide? [TO] WIDE [TO] TGT ;
: TGT@ TGT 6 = IF EA MEM+ ELSE TGT tgtreg THEN ;
: TGT!ZNV (n --) \ write n to TGT and update flags
 TGT@ DUP W?@ (n a old) ROT TUCK ZNV! (a n) SWAP W?! ;

B347
\ ops all have a neutral signature and expect EA, TGT and WIDE
\ to be set.
\ INH and special words
: TODO ABORT" TODO" ; : RTS TODO ; : ABX TODO ; : RTI TODO ;
: CWAI TODO ; : SWI TODO ;
: NOP ;
: CLR 0 TGT@ W?! CC@ $f0 AND $04 OR CC! ;
: JMP EA PC! ;
: JSR PC@ push16 EA PC! ;
: BSR PC@+ PC@ push16 PC+b! ;
: MUL 'A C@ 'B C@ * DUP 'D T! (n)
 DUP NOT << << (n z) SWAP $80 AND << >>8 (z c) OR
 (f = 00000Z0C) CC@ $fa AND OR CC! ;

B348
: SYNC 1 [TO] HALT? ;
: DAA TODO ;
: SEX 'B C@ signext DUP 'D T! DUP ZNV! ;
: _regs (-- rd rs)
 PC@+ DUP $0f AND tgtreg SWAP >>4 tgtreg
 DUP tgtwide? [TO] WIDE ;
: EXG _regs '<>! ; : TFR _regs W?@ SWAP W?! ;

248 5 6809

B349
\ br ops: ignore TGT and EA and expect PC to point to a relative
\ offset, 8b if PAGE=0, 16b if PAGE=1
: BRA PAGE IF PC@+ PC+b! ELSE PC@++ PC+n! THEN ;
: BRN PC+ PAGE IF PC+ THEN ;
: ?br IF BRA ELSE BRN THEN ;
: BR ' DOER , DOES> @ CC@ SWAP EXECUTE ?br ;
: NBR ' DOER , DOES> @ CC@ SWAP EXECUTE NOT ?br ;
: CBRA 0 ; : CBHI 5 AND ; : CBCC 1 AND ; : CBNE 4 AND ;
: CBVC 2 AND ; : CBPL 8 AND ;
: CBGE DUP CBVC SWAP CBPL = NOT ;
: CBGT DUP CBGE SWAP CBNE OR ;
NBR CBHI BHI BR CBHI BLS NBR CBCC BCC BR CBCC BCS
NBR CBNE BNE BR CBNE BEQ NBR CBVC BVC BR CBVC BVS
NBR CBPL BPL BR CBPL BMI NBR CBGE BGE BR CBGE BLT
NBR CBGT BGT BR CBGT BLE

B350
\ TGTOP: Read TGT value, operate, then write to TGT and flags
: TGTOP ' DOER , DOES> @ TGT@ W?@ SWAP EXECUTE TGT!ZNV ;
: asr (n -- n) DUP >>CC SWAP $80 AND OR ; TGTOP asr ASR
: com $ff XOR ; TGTOP com COM
TGTOP 1- DEC TGTOP 1+ INC
TGTOP <<CC ASL TGTOP >>CC LSR
: neg 0 -^ ; TGTOP neg NEG
: rol carry> SWAP <<CC OR ; TGTOP rol ROL
: ror carry> <<8 >> OR >>CC ; TGTOP ror ROR
: lea DROP EA ; TGTOP lea LEA

B351
\ EAOP: Read TGT and EA, apply op, write to TGT and flags
: EAOP ' DOER , DOES>
 @ TGT@ W?@ EA@@ ROT EXECUTE TGT!ZNV ;
CODE +c (a b -- a+b carry) INLINE + 0 i>, C>!, ;CODE
: adc (a b -- n) WIDE IF +c SWAP carry> +c ROT OR
 ELSE + DUP >>8 THEN >carry ;
EAOP adc ADC
: add 0 >carry adc ; EAOP add ADD
CODE -c (a b -- a-b carry) INLINE - 0 i>, C>!, ;CODE
: sbc -c SWAP carry> -c ROT OR >carry ; EAOP sbc SBC
: sub 0 >carry sbc ; EAOP sub SUB
EAOP AND AND_ EAOP XOR EOR EAOP OR OR_ EAOP NIP LD

5.8 6809 emulator: 340-354 249

B352
\ FLAGOP: Reads TGT, perform op, then update NVZ flags only
: FLAGOP ' DOER , DOES>
 @ TGT@ W?@ DUP ROT EXECUTE (old new) ZNV! ;
FLAGOP NOOP TST
: cmp EA@@ sub ; FLAGOP cmp CMP
: st DUP EA@! ; FLAGOP st ST
: bit EA@@ AND ; FLAGOP bit BIT

B353
CREATE _ 8 nC, 10 8 9 11 1 2 4 5
: PSHS _ 7 + PC@+ BEGIN (a flags)
 DUP $80 AND IF OVER C@ DUP tgtreg (a flags tgtid reg)
 SWAP tgtwide? IF T@ push16 ELSE C@ push8 THEN
 << $ff AND SWAP 1- SWAP ?DUP NOT UNTIL DROP ;
: PULS _ PC@+ BEGIN (a flags)
 DUP 1 AND IF OVER C@ DUP tgtreg (a flags tgtid reg)
 SWAP tgtwide? IF pull16 T! ELSE pull8 C! THEN
 >> SWAP 1+ SWAP ?DUP NOT UNTIL DROP ;
: U<>S 'U 'S '<>! ;
: PSHU U<>S PSHS U<>S ; : PULU U<>S PULS U<>S ;
: PSH TGT@ 3 = IF PSHU ELSE PSHS THEN ;
: PUL TGT@ 3 = IF PULU ELSE PULS THEN ;

B354
OPCNT WORDTBL OPS ABX ADC ADD AND_ ASL ASR BIT CLR CMP COM CWAI
 DAA DEC EOR EXG INC JMP JSR LD LEA LSR MUL NEG NOP OR PSH PUL
 ROL ROR RTI RTS SBC SEX ST SUB SWI SYNC TFR TST BSR
BRA BRN BHI BLS BCC BCS BNE BEQ BVC BVS BPL BMI BGE BLT BGT BGE
: run1
 HALT? IF ABORT" CPU halted" THEN
 0 [TO] PAGE PC@+ DUP $ee AND $10 = IF
 1 AND 1+ [TO] PAGE PC@+ THEN
 DUP setTGT DUP setEA opid
 DUP OPCNT < IF << OPS + @ EXECUTE ELSE NIL THEN
 VERBOSE IF cpu. THEN
 BRK? IF ABORT" breakpoint reached" THEN ;
: runN >R BEGIN run1 NEXT ; : run BEGIN run1 AGAIN ;
: 6809E$ $100 PC! 0 'DP C! ;

250 5 6809

5.9 Virgil's workspace: 360

B360
\ test a few ops in 6809E
6809E$ 1 TO VERBOSE
HERE MEM $100 + 'HERE !
$42 # LDA, $56 # ADDA, $12 <> STA, $12 <> SUBB, SYNC,
'HERE !

6 6502

6.1 Architecture index: 300

B300
6502 MASTER INDEX

301 6502 macros and consts 302 6502 assembler
310 6502 boot code 330 6502 disassembler
335 6502 emulator 350 Virgil's workspace
360 Apple IIe drivers

6.2 6502 macros and consts: 301 251

6.2 6502 macros and consts: 301

B301
\ 6502 macros and constants. See doc/code/6502.txt
: 6502A 302 305 LOADR 7 LOAD (flow) ;
: 6502M 309 LOAD ;
: 6502C 310 320 LOADR ;
: 6502D 330 334 LOADR ;
: 6502E 335 342 LOADR ;
\ ZP assignments
$06 CONSTANT 'A
$08 CONSTANT 'N
0 VALUE IPL 2 VALUE INDJ
: IPH IPL 1+ ; : INDL INDJ 1+ ; : INDH INDL 1+ ;

6.3 6502 assembler: 302-307

B302
\ 6502 assembler, Addressing modes.
\ output: n n-is-2b opoff
: # (n) 0 $09 ; \ Immediate
: <> (n) 0 $05 ; \ ZeroPage
: <X+> (n) 0 $15 ; \ ZeroPage+X
: <Y+> (n) 0 $15 ; \ Only for LDX
: () (n) 1 $0d ; \ Absolute
: (X+) (n) 1 $1d ; \ Absolute+X
: (Y+) (n) 1 $19 ; \ Absolute+Y
: [X+] (n) 0 $01 ; \ Indirect+X
: []Y+ (n) 0 $11 ; \ Indirect+Y
: ?, (n n-is-2b --) IF L, ELSE C, THEN ;

B303
\ 6502 asm, Groups 1 and 2, 3-with-AM
: OPG1 DOER C, DOES> C@ OR C, ?, ;
$60 OPG1 ADC, $20 OPG1 AND, $c0 OPG1 CMP, $40 OPG1 EOR,
$a0 OPG1 LDA, $00 OPG1 ORA, $e0 OPG1 SBC, $80 OPG1 STA,

: _09repl DUP $09 = IF DROP 1 THEN ;
: OPG2 DOER C, DOES> C@ SWAP _09repl OR 1+ C, ?, ;
$00 OPG2 ASL, $c0 OPG2 DEC, $e0 OPG2 INC, $a0 OPG2 LDX,
$40 OPG2 LSR, $20 OPG2 ROL, $60 OPG2 ROR, $80 OPG2 STX,

: OPG3 DOER C, DOES> C@ SWAP _09repl OR 1- C, ?, ;
$20 OPG3 BIT, $e0 OPG3 CPX, $c0 OPG3 CPY, $a0 OPG3 LDY,
$80 OPG3 STY,

252 6 6502

B304
\ 6502 asm, implied, branching
: OP DOER C, DOES> C@ C, ;
$0a OP ASLA, $00 OP BRK, $18 OP CLC, $d8 OP CLD, $58 OP CLI,
$b8 OP CLV, $ca OP DEX, $88 OP DEY, $e8 OP INX, $c8 OP INY,
$4a OP LSRA, $ea OP NOP, $48 OP PHA, $08 OP PHP, $68 OP PLA,
$28 OP PLP, $2a OP ROLA, $6a OP RORA, $40 OP RTI, $60 OP RTS,
$38 OP SEC, $f8 OP SED, $78 OP SEI, $aa OP TAX, $a8 OP TAY,
$98 OP TYA, $ba OP TSX, $8a OP TXA, $9a OP TXS,

: OPBR DOER C, DOES> C@ C, C, ;
$90 OPBR BCC, $b0 OPBR BCS, $f0 OPBR BEQ, $30 OPBR BMI,
$d0 OPBR BNE, $10 OPBR BPL, $50 OPBR BVC, $70 OPBR BVS,

: OPBR2 DOER C, DOES> C@ C, L, ;
$20 OPBR2 JSR, $4c OPBR2 JMP, $6c OPBR2 JMP[],

B305
\ 6502 HAL
ALIAS JMP, JMPi, ALIAS JMP[], JMP(i), ALIAS JSR, CALLi,
: JRi, CLV, BVC, ; \ no BRA!
ALIAS BEQ, JRZi, ALIAS BNE, JRNZi,
ALIAS BCS, JRCi, ALIAS BCC, JRNCi,
: i>, DEX, DEX, DUP # LDA, 0 <X+> STA, >>8 # LDA, 1 <X+> STA, ;
: (i)>,
 DEX, DEX, DUP () LDA, 0 <X+> STA, 1+ () LDA, 1 <X+> STA, ;

6.4 6502 port macros: 309

B309
\ 6502 port macros

\ helpers
: PS<>, (src dst) SWAP <X+> LDA, <X+> STA, ;
: PSCLR16, 0 # LDA, DUP <X+> STA, 1+ <X+> STA, ;
: A>IND+, INDL []Y+ STA, INY, ;
: PS>A, <X+> LDA, ;
: A>PS, <X+> STA, ;
: PSINC, 0 <X+> INC, IFZ, 1 <X+> INC, THEN, ;
: IP+, IPL <> INC, 2 BNE, IPH <> INC, ;

6.5 6502 boot code: 310-320 253

6.5 6502 boot code: 310-320

B310
\ 6502 boot code PS=X RS=S
0 JMP, 9 ALLOT0 \ STABLE ABI
PC XORG $01 (main jmp) + T!
$6c # LDA, INDJ <> STA, $ff # LDX, TXS, BIN($04 + JMP[], \ BOOT
LSET lblcell DEX, DEX, PLA, 0 A>PS, PLA, 1 A>PS, PSINC, \ next
LSET lblnext IPH <> LDY, IPL <> LDA, INDH <> STY, INDL <> STA,
LSET L1 CLC, 2 # ADC, IFC, INY, THEN, IPL <> STA, IPH <> STY,
 INDJ JMP,
LSET lblxt PLA, INDL <> STA, PLA, INDH <> STA,
 IPH <> LDA, PHA, IPL <> LDA, PHA,
 INDL <> INC, IFZ, INDH <> INC, THEN,
 INDL <> LDA, INDH <> LDY, L1 JMP,
LSET lbldoes CLC, PLA, TAY, PLA, INY, IFZ, 1 # ADC, THEN,
 INDL <> STY, INDH <> STA, DEX, DEX, 1 <X+> STA, TYA, 2 # ADC,
 IFC, 1 <X+> INC, THEN, 0 <X+> STA, INDJ JMP,

B311
CODE BYE BRK,
CODE QUIT
 TXA, $ff # LDX, TXS, TAX, BIN($0a (main) + JMP[],
CODE ABORT $ff # LDX, X' QUIT BR BNE,
CODE EXIT PLA, IPL <> STA, PLA, IPH <> STA, ;CODE
CODE EXECUTE 0 <X+> LDA, INDL <> STA, 1 <X+> LDA, INDH <> STA,
 INX, INX, INDL JMP[],
CODE SCNT INDL <> STX, DEX, DEX, 0 # LDA, 1 <X+> STA,
 $ff # LDA, SEC, INDL <> SBC, 0 <X+> STA, ;CODE
CODE RCNT TXA, TSX, INDL <> STX, TAX, DEX, DEX, 0 # LDA,
 1 <X+> STA, $ff # LDA, SEC, INDL <> SBC, 0 <X+> STA, ;CODE

B312
CODE (b) 0 # LDY, IPL []Y+ LDA, DEX, DEX, 0 A>PS, 0 # LDA,
 1 A>PS, IP+, ;CODE
CODE (n) 0 # LDY, IPL []Y+ LDA, DEX, DEX, 0 A>PS, INY,
 IPL []Y+ LDA, 1 A>PS, IP+, IP+, ;CODE
CODE (br) 0 # LDY, IPL []Y+ LDA, FJR BPL, IPH <> DEC, THEN,
 CLC, IPL <> ADC, IFC, IPH <> INC, THEN, IPL <> STA, ;CODE
CODE (?br) 0 <X+> LDA, 1 <X+> ORA, INX, INX,
 0 # ORA, X' (br) BR BEQ, IP+, ;CODE
CODE (next) PLA, TAY, IFZ, \ ovfl, always jump
 PLA, SEC, 1 # SBC, PHA, $ff # LDA, PHA, X' (br) JMP, THEN,
 DEY, IFNZ, (no zero, jump) TYA, PHA, X' (br) JMP, THEN,
 PLA, IFNZ, PHA, 0 # LDA, PHA, X' (br) JMP, THEN,
 (finished!) IP+, ;CODE

254 6 6502

B313
CODE C@ 0 [X+] LDA, 0 <X+> STA, 0 # LDA, 1 <X+> STA, ;CODE
CODE @ LSET L1 0 [X+] LDA, TAY, PSINC, 0 [X+] LDA,
 0 <X+> STY, 1 <X+> STA, ;CODE
LSET lblval DEX, DEX, PLA, 0 A>PS, PLA, 1 A>PS, PSINC, L1 JMP,
CODE C! 2 <X+> LDA, 0 [X+] STA, INX, INX, INX, INX, ;CODE
CODE ! 2 <X+> LDA, 0 [X+] STA, PSINC, 3 <X+> LDA, 0 [X+] STA,
 INX, INX, INX, INX, ;CODE
CODE 1+ PSINC, ;CODE
CODE 1- 0 <X+> LDA, IFZ, 1 <X+> DEC, THEN, 0 <X+> DEC, ;CODE
CODE + CLC, 2 <X+> LDA, 0 <X+> ADC, 2 <X+> STA, 3 <X+> LDA,
 1 <X+> ADC, 3 <X+> STA, INX, INX, ;CODE
CODE - 2 <X+> LDA, SEC, 0 <X+> SBC, 2 <X+> STA, 3 <X+> LDA,
 1 <X+> SBC, 3 <X+> STA, INX, INX, ;CODE
CODE < 3 PS>A, 1 <X+> CMP, IFZ, 2 PS>A, 0 <X+> CMP, THEN,
 INX, INX, 0 # LDA, 1 A>PS, 0 # ADC, 1 # EOR, 0 A>PS, ;CODE

B314
CODE << 0 <X+> ASL, 1 <X+> ROL, ;CODE
CODE >> 1 <X+> LSR, 0 <X+> ROR, ;CODE
CODE <<8 0 1 PS<>, 0 # LDA, 0 <X+> STA, ;CODE
CODE >>8 1 0 PS<>, 0 # LDA, 1 <X+> STA, ;CODE
CODE AND 0 <X+> LDA, 2 <X+> AND, 2 <X+> STA, 1 <X+> LDA,
 3 <X+> AND, 3 <X+> STA, INX, INX, ;CODE
CODE OR 0 <X+> LDA, 2 <X+> ORA, 2 <X+> STA, 1 <X+> LDA,
 3 <X+> ORA, 3 <X+> STA, INX, INX, ;CODE
CODE XOR 0 <X+> LDA, 2 <X+> EOR, 2 <X+> STA, 1 <X+> LDA,
 3 <X+> EOR, 3 <X+> STA, INX, INX, ;CODE
CODE NOT 0 # LDY, 0 <X+> LDA, 1 <X+> ORA, 1 <X+> STY,
 IFZ, INY, THEN, 0 <X+> STY, ;CODE

B315
CODE * DEX, DEX, 16 # LDY, 0 PSCLR16,
 BEGIN, 0 <X+> ASL, 1 <X+> ROL, 4 <X+> ASL, 5 <X+> ROL,
 IFC, CLC, 2 <X+> LDA, 0 <X+> ADC, 0 <X+> STA, 3 <X+> LDA,
 1 <X+> ADC, 1 <X+> STA, THEN, DEY, BR BNE,
 0 4 PS<>, 1 5 PS<>, INX, INX, INX, INX, ;CODE
CODE /MOD \ a b -- r q
 DEX, DEX, DEX, 16 # LDA, 0 <X+> STA, (cnt)
 1 PSCLR16, (remaining)
 \ 3-4 = divisor 5-6 = dividend
 BEGIN, 5 <X+> ASL, 6 <X+> ROL, 1 <X+> ROL, 2 <X+> ROL,
 1 <X+> LDA, SEC, 3 <X+> SBC, TAY, 2 <X+> LDA, 4 <X+> SBC,
 IFC, 2 <X+> STA, 1 <X+> STY, 5 <X+> INC, THEN,
 0 <X+> DEC, BR BNE,
 5 3 PS<>, 6 4 PS<>, 1 5 PS<>, 2 6 PS<>, INX, INX, INX, ;CODE

6.5 6502 boot code: 310-320 255

B316
CODE DUP LSET L1 DEX, DEX, 2 0 PS<>, 3 1 PS<>, ;CODE
CODE ?DUP 0 <X+> LDA, 1 <X+> ORA, L1 BR BNE, ;CODE
CODE DROP INX, INX, ;CODE
CODE SWAP 0 <X+> LDA, 2 <X+> LDY, 0 <X+> STY, 2 <X+> STA,
 1 <X+> LDA, 3 <X+> LDY, 1 <X+> STY, 3 <X+> STA, ;CODE
CODE OVER DEX, DEX, 4 0 PS<>, 5 1 PS<>, ;CODE
CODE ROT (a b c -- b c a) 5 <X+> LDY, 3 5 PS<>, 1 3 PS<>,
 1 <X+> STY, 4 <X+> LDY, 2 4 PS<>, 0 2 PS<>, 0 <X+> STY, ;CODE
CODE ROT> (a b c -- c a b) 1 <X+> LDY, 3 1 PS<>, 5 3 PS<>,
 5 <X+> STY, 0 <X+> LDY, 2 0 PS<>, 4 2 PS<>, 4 <X+> STY, ;CODE
CODE R@ DEX, DEX, PLA, 0 <X+> STA, TAY, PLA, 1 <X+> STA, PHA,
 TYA, PHA, ;CODE
CODE >R 1 <X+> LDA, PHA, 0 <X+> LDA, PHA, INX, INX, ;CODE
CODE R> DEX, DEX, PLA, 0 <X+> STA, PLA, 1 <X+> STA, ;CODE
CODE R~ PLA, PLA, ;CODE

B317
CODE [C]? (c a u -- i)
 $ff # LDY, 0 PS>A, 'N <> STA, 2 PS>A, INDL <> STA, 3 PS>A,
 INDH <> STA, 4 PS>A, INX, INX, INX, INX, BEGIN,
 INY, 'N <> CPY, IFZ, $ff # LDA, 0 A>PS, 1 A>PS,
 ;CODE THEN, INDL []Y+ CMP, BR BNE, (match!)
 0 <X+> STY, ;CODE
CODE JMPi! (pc a -- len) $4c # LDA, PHA, LSET L1
 0 PS>A, INDL <> STA, 1 PS>A, INDH <> STA, 0 # LDY, PLA,
 A>IND+, 2 PS>A, A>IND+, 3 PS>A, A>IND+, INX, INX, 0 <X+> STY,
 0 # LDA, 1 A>PS, ;CODE
CODE CALLi! $20 # LDA, PHA, L1 BR BNE,
CODE i>! (i a -- len) 0 PS>A, INDL <> STA, 1 PS>A,
 INDH <> STA, 0 # LDY, $ca # LDA, A>IND+, A>IND+, $a9 # LDA,
 A>IND+, 3 PS>A, A>IND+, $95 # LDA, A>IND+, 1 # LDA, A>IND+,
 $a9 # LDA, A>IND+, 2 PS>A, A>IND+, $95 # LDA, A>IND+, 0 # LDA,
 A>IND+, INX, INX, 1 A>PS, 10 # LDA, 0 A>PS, ;CODE

B318
LSET L1 \ cmp strs at [INDL] and ['N] with cnt <X+0>
 0 # LDY, BEGIN,
 INDL []Y+ LDA, 'N []Y+ CMP, IFNZ, RTS, THEN,
 INY, 0 <X+> DEC, BR BNE, RTS,
CODE []= (a1 a2 u -- f)
 2 <X+> LDA, INDL <> STA, 3 <X+> LDA, INDH <> STA,
 4 <X+> LDA, 'N <> STA, 5 <X+> LDA, 'N 1+ <> STA,
 0 4 PS<>, 1 <X+> LDY, INY, 5 <X+> STY, INX, INX, INX, INX,
 BEGIN,
 L1 JSR, IFNZ, (fail) 0 PSCLR16, ;CODE THEN,
 1 <X+> DEC, BR BNE,
 (success) 0 <X+> INC, ;CODE

256 6 6502

B319
CODE FIND (sa sl -- w? f) \ 0=cnt 1=sl 2-3=curword N=sa
 2 <X+> LDA, 'N <> STA, 3 <X+> LDA, 'N 1+ <> STA, 0 1 PS<>,
 SYSVARS $02 + DUP () LDA, 2 <X+> STA, 1+ () LDA, 3 <X+> STA,
 BEGIN,
 3 <X+> LDA, INDH <> STA, 2 <X+> LDA,
 SEC, 3 # SBC, IFNC, INDH <> DEC, THEN, INDL <> STA,
 0 # LDY, INDL []Y+ LDA, PHA, INY, INDL []Y+ LDA, PHA, \ prev
 INY, INDL []Y+ LDA, $7f # AND, 1 <X+> CMP, IFZ,
 0 <X+> STA, INDL <> LDA, SEC, 0 <X+> SBC, INDL <> STA,
 IFNC, INDH <> DEC, THEN, L1 JSR, IFZ, \ match
 PLA, PLA, 0 # LDY, 1 <X+> STY, INY, 0 <X+> STY, ;CODE
 THEN, THEN,
 PLA, 3 <X+> STA, PLA, 2 <X+> STA, 3 <X+> ORA, IFZ, \ end
 INX, INX, 0 <X+> STA, 1 <X+> STA, ;CODE THEN,
 JMP,

B320
CODE A> DEX, DEX, 'A <> LDA, 0 A>PS, 'A 1+ <> LDA, 1 A>PS, ;CODE
CODE >A 0 PS>A, 'A <> STA, 1 PS>A, 'A 1+ <> STA, INX, INX, ;CODE
CODE A>R 'A 1+ <> LDA, PHA, 'A <> LDA, PHA, ;CODE
CODE R>A PLA, 'A <> STA, PLA, 'A 1+ <> STA, ;CODE
CODE A+ 'A <> INC, IFZ, 'A 1+ <> INC, THEN, ;CODE
CODE A- 'A <> LDA, IFZ, 'A 1+ <> DEC, THEN, 'A <> DEC, ;CODE
CODE AC@
 DEX, DEX, 0 # LDY, 1 <X+> STY, 'A []Y+ LDA, 0 A>PS, ;CODE
CODE AC! 0 # LDY, 0 PS>A, 'A []Y+ STA, INX, INX, ;CODE

6.6 6502 disassembler: 330-334

B330
\ 6502 disassembler
\ order below represent "opid", also used in emulator
CREATE OPNAME ," ORAANDEORADCSTALDACMPSBC" \ 1/5/9/d x8
," ASLROLLSRRORSTXLDXDECINC" \ 6/a/e x8
," BITJMPSTYLDYCPYCPX" \ 4/c x6
," BRKBPLJSRBMIRTIBVCRTSBVSBCCLDYBCSCPYBNECPXBEQ" \ 0 x15
," PHPCLCPLPSECPHACLIPLASEIDEYTYATAYCLVINYCLDINXSED" \ 8 x16
," TXATXSTAXTSXDEXNOP" \ a x6
59 CONSTANT OPCNT $ff CONSTANT NUL 20 VALUE DISCNT
: >>4 >> >> >> >> ;
: opid. DUP OPCNT < IF
 3 * OPNAME + 3 STYPE ELSE DROP ." ???" THEN ;
: WORDTBL (n --) CREATE >R BEGIN ' , NEXT ;
: spcs (n --) >R BEGIN SPC> NEXT ;

6.6 6502 disassembler: 330-334 257

B331
: id159d (opcode -- opid)
 DUP $89 = IF DROP NUL ELSE >>4 >> THEN ;
CREATE _ 24 nC, $c $c $d $d $e $e $f $f
 $35 $36 $37 $38 $39 NUL $3a NUL
 $c NUL $d $d $e $e $f $f
: id6ae DUP $80 < IF (ASL/ROL/LSR/ROR)
 DUP $1f AND $1a = IF DROP NUL EXIT THEN >>4 >> 8 + EXIT THEN
 DUP >> >> 1- 3 AND 8 * _ + (op tbl) SWAP >>4 7 AND + C@ ;
CREATE _ 32 nC,
NUL NUL $10 NUL NUL NUL NUL NUL $12 $12 $13 $13 $14 $14 $15 NUL
NUL NUL $10 NUL $11 NUL $11 NUL $12 NUL $13 $13 $14 NUL $15 NUL
: id4c _ OVER $8 AND IF $10 + THEN SWAP >>4 + C@ ;
: idnul DROP NUL ;
: id0 >>4 DUP 8 = IF DROP NUL EXIT THEN
 DUP 8 > IF 1- THEN 22 + ;
: id8 >>4 37 + ;

B332
: id2 $a2 = IF $0d ELSE NUL THEN ;
16 WORDTBL _ id0 id159d id2 idnul id4c
 id159d id6ae idnul id8 id159d
 id6ae idnul id4c id159d id6ae idnul
: opid DUP $f AND << _ + @ EXECUTE ;
\ 0=inh 1=imm 2=acc 3=zp 4=zp,X 5=zp,Y 6=abs 7=abs,X 8=abs,Y
\ 9=ind 10=ind,X 11=ind,Y 12=rel
CREATE _ $40 nC, 0 10 1 0 3 3 3 0 0 1 2 0 6 6 6 0
 12 11 0 0 4 4 4 0 0 8 0 0 7 7 7 0
 1 10 1 0 3 3 3 0 0 1 0 0 6 6 6 0
 12 11 0 0 4 4 4 0 0 8 0 0 7 7 7 0
: modeid (opcode -- id)
 DUP $20 = IF DROP 6 EXIT THEN DUP $6c = IF DROP 9 EXIT THEN
 DUP $be = IF DROP 8 EXIT THEN
 DUP $80 AND >> >> SWAP $1f AND OR _ + C@ ;

B333
: inh. (a -- a) 7 spcs ; : byte. C@+ .x ;
: $. '$' EMIT byte. ; : zp. $. 4 spcs ; ALIAS zp. rel.
: imm. '#' EMIT byte. 4 spcs ;
: $$. '$' EMIT C@+ SWAP C@+ .x SWAP .x ; : abs. $$. 2 spcs ;
: ind. '(' EMIT $$. ')' EMIT ;
: acc. 'A' EMIT 6 spcs ;
: ,X. ',' EMIT 'X' EMIT ;
: ,Y. ',' EMIT 'Y' EMIT ;
: zp,X. $. ,X. 2 spcs ; : zp,Y. $. ,Y. 2 spcs ;
: abs,X. $$. ,X. ; : abs,Y. $$. ,Y. ;
: ind,X. '(' EMIT $. ,X. ')' EMIT ;
: ind,Y. '(' EMIT $. ')' EMIT ,Y. ;
13 WORDTBL _ inh. imm. acc. zp. zp,X. zp,Y. abs. abs,X. abs,Y.
 ind. ind,X. ind,Y. rel.

258 6 6502

B334
: mode. (a opcode -- a) modeid << _ + @ EXECUTE ;
: op. (a -- a) C@+ DUP opid DUP opid. SPC>
 OPCNT < IF mode. ELSE DROP THEN ;
: dump (a u --) >R BEGIN C@+ .x SPC> NEXT DROP ;
: dis (a --) DISCNT >R BEGIN
 DUP ORG - BIN(+ .X SPC> DUP op. SPC>
 TUCK OVER - dump NL> NEXT DROP ;

6.7 6502 emulator: 335-342

B335
\ 6502 emulator
CREATE 'A 7 ALLOT
'A 1+ CONSTANT 'X 'X 1+ CONSTANT 'Y 'Y 1+ CONSTANT 'S
'S 1+ CONSTANT 'P 'P 1+ CONSTANT 'PC
0 VALUE EA \ effective addr in *target*. ffff means accumulator
$800 CONSTANT MEMSZ \ 2k ought to be enough for anybody
CREATE MEM MEMSZ ALLOT
: 6502E$ 0 'P C! $200 'PC ! ;
: oor? (pc -- pc) DUP MEMSZ >= IF
 .X ABORT" addr out of range" THEN ;
: mem+ oor? MEM + ; : ea@ EA $ffff = IF 'A ELSE EA mem+ THEN ;
: mc@ mem+ C@ ; : mc@+ DUP mc@ SWAP 1+ SWAP ; : mc! mem+ C! ;
: m@ mem+ @ ; : m@+ DUP m@ SWAP 1+ 1+ SWAP ;
: X+ 'X C@ + ; : Y+ 'Y C@ + ; : a@ 'A C@ ; : a! 'A C! ;
: pc@ 'PC @ ; : mpc@ pc@ mem+ ;

B336
: ea! (pc --) oor? [TO] EA ;
: inh (pc -- pc+?) 0 ea! ; ALIAS inh acc
: zp mc@+ ea! ;
: imm DUP ea! 1+ ;
: abs m@+ ea! ;
: ind m@+ m@ ea! ;
: zp,X mc@+ X+ <<8 >>8 ea! ;
: zp,Y mc@+ Y+ <<8 >>8 ea! ;
: abs,X m@+ X+ oor? ea! ;
: abs,Y m@+ Y+ oor? ea! ;
: ind,X mc@+ X+ m@ ea! ;
: ind,Y mc@+ m@ Y+ ea! ;
13 WORDTBL _ inh imm acc zp zp,X zp,Y abs abs,X abs,Y ind ind,X
 ind,Y imm
: eard (pc opcode -- pc+?) modeid << _ + @ EXECUTE ;

6.7 6502 emulator: 335-342 259

B337
: p! (n mask --) 'P C@ AND OR 'P C! ;
: carry! (n -- n) L|M NOT NOT (n cf) $fe p! ;
: carry? (-- f) 'P C@ 1 AND ;
: nz! (n --) DUP NOT << SWAP $80 AND OR $7d p! ;
: v! (n --) $80 AND a@ $80 AND XOR >> $bf p! ;
: a!nz DUP a! nz! ; : a!nzv DUP v! a!nz ;
: ora EA mc@ a@ OR a!nz ;
: and EA mc@ a@ AND a!nz ;
: eor EA mc@ a@ XOR a!nz ;
: adc EA mc@ carry? + a@ + carry! a!nzv ;
: sbc a@ EA mc@ carry? + - carry! a!nzv ;
: asl ea@ DUP C@ << carry! DUP nz! SWAP C! ;
: rol ea@ DUP C@ << carry? OR carry! DUP nz! SWAP C! ;

B338
: lsr ea@ DUP C@ DUP 1 AND $fe p! >> DUP nz! SWAP C! ;
: ror
 ea@ DUP C@ carry? <<8 OR DUP 1 AND $fe p! >> DUP nz! SWAP C! ;
: _ DOER , DOES> @ C@ ea@ C! ;
'A _ sta 'X _ stx 'Y _ sty
: _ DOER , DOES> @ EA mc@ DUP nz! SWAP C! ;
'A _ lda 'X _ ldx 'Y _ ldy
: _ DOER , DOES> @ C@ EA mc@ - carry! DUP v! nz! ;
'A _ cmp 'X _ cpx 'Y _ cpy
: pc+ea EA mc@ DUP $7f > IF $ff00 OR THEN 'PC @ + 'PC ! ;
: _ DOER C, DOES> C@ 'P C@ AND IF pc+ea THEN ;
$01 _ bcs $02 _ beq $40 _ bvs $80 _ bmi
: _ DOER C, DOES> C@ 'P C@ AND NOT IF pc+ea THEN ;
$01 _ bcc $02 _ bne $40 _ bvc $80 _ bpl

B339
: _ DOER C, DOES> C@ 'P C@ OR 'P C! ;
$01 _ sec $08 _ sed $04 _ sei $10 _ brk
: _ DOER C, DOES> C@ 'P C@ AND 'P C! ;
$fe _ clc $f7 _ cld $fb _ cli $bf _ clv
: pull (-- b) 'S C@ $100 OR mc@+ SWAP 'S C! ;
: push (b --) 'S C@ 1- <<8 >>8 DUP 'S C! $100 OR mc! ;
: pla pull 'A C! ; : plp pull 'P C! ;
: pha a@ push ; : php 'P C@ push ;
: rti plp pull pull <<8 OR 'PC ! ;
: rts pull pull <<8 OR 1+ 'PC ! ;
: jmp EA 'PC ! ;
: jsr pc@ 1- L|M push push jmp ;
: bit EA mc@ DUP a@ AND NOT << OR $cd p! ;

260 6 6502

B340
: inc EA mc@ 1+ DUP nz! EA mc! ;
: dec EA mc@ 1- DUP nz! EA mc! ;
: dex 'X C@ 1- DUP nz! 'X C! ;
: dey 'Y C@ 1- DUP nz! 'Y C! ;
: inx 'X C@ 1+ DUP nz! 'X C! ;
: iny 'Y C@ 1+ DUP nz! 'Y C! ;
: txa 'X C@ 'A C! ;
: tax 'A C@ 'X C! ;
: tya 'Y C@ 'A C! ;
: tay 'A C@ 'Y C! ;
: txs 'X C@ 'S C! ;
: tsx 'S C@ 'X C! ;
ALIAS NOOP nop

B341
\ opid same as in disassembler
OPCNT WORDTBL _ ora and eor adc sta lda cmp sbc asl rol lsr ror
 stx ldx dec inc bit jmp sty ldy cpy cpx brk bpl jsr bmi rti
 bvc rts bvs bcc ldy bcs cpy bne cpx beq php clc plp sec pha
 cli pla sei dey tya tay clv iny cld inx sed txa txs tax tsx
 dex nop
: nulop (op --) .x ABORT" invalid opcode" ;
: oprun (opcode --) opid DUP OPCNT < IF
 << _ + @ EXECUTE ELSE nulop THEN ;
CREATE _ ," AXYSP"
: cpu. _ >A 'A >B 5 >R BEGIN
 AC@+ EMIT SPC> B> C@ .x B+ SPC> NEXT ." PC " 'PC @ .X NL> ;

B342
2 VALUES VERBOSE 'BRK?
: BRK? 'BRK? DUP IF EXECUTE THEN ;
: run1 (--)
 'P C@ $10 AND IF ABORT" CPU halted" THEN
 'PC @ mc@+ TUCK eard 'PC ! oprun
 VERBOSE IF cpu. THEN
 BRK? IF ABORT" breakpoint reached" THEN ;
: runN >R BEGIN run1 NEXT ; : run BEGIN run1 AGAIN ;

6.8 Virgil's workspace: 350-355 261

6.8 Virgil's workspace: 350-355

B350
\ play around with emulator: ARCHM 6502A 6502D 6502E
6502E$ 1 TO VERBOSE
HERE MEM $200 + 'HERE !
$203 JMP, $02 # LDA, TAY, $12 # ADC, 1 <> SBC, BRK,
'HERE !

B351
\ xcomp for emulated 6502 machine
$200 TO BIN(

B352
\ extra words for emulating COS. Load after 6502E
: pullX (-- b) 'X C@ mc@+ SWAP 'X C! ;
: pushX (b --) 'X C@ 1- <<8 >>8 DUP 'X C! mc! ;

262 6 6502

B353
\ test 6502 bare native words under emulator
\ do regular xcomp until *before* blk containing BOOT.
\ then load this. Copy to emul's MEM+$200 then run.
\ toPC with ORG+04 will get you to BOOT. then, toBRK
CODE BOOT 42 i>, $1234 i>, INLINE + BRK,
XCURRENT XORG $04 + T!

B354
\ same as prev block, but BOOT is a XT word
: BOOT INIT 'X' (emit) 'Y' (emit) BYE ;
XCURRENT XORG $04 + T!

B355
\ drivers for 6502 emulator. simply emit in memory at page $700
\ $7ff contains the current emit position.
CODE (emit) 0 <X+> LDA, INX, INX, $7ff () LDY, $700 (Y+) STA,
$7ff () INC, ;CODE
CODE INIT 0 # LDA, $7ff () STA, ;CODE

6.9 Apple IIe drivers: 360-362 263

6.9 Apple IIe drivers: 360-362

B360
\ Apple IIe drivers, (key?)
CODE (key?) (-- c? f)
 DEX, DEX, 0 # LDA, 0 A>PS, 1 A>PS, $c000 () LDA, FJR BPL,
 $7f # AND, 0 A>PS, DEX, DEX, 0 # LDA, 1 A>PS,
 1 # LDA, 0 A>PS, $c010 () STA,
 THEN, ;CODE

B361
\ Apple IIe drivers, grid
2 CONSTS 80 COLS 24 LINES
CODE 80col $c300 JSR, ;CODE
: pos2yx (pos -- yx) COLS /MOD (x y) <<8 OR ;
CODE yx2a (yx -- a)
 $c054 () STA, 1 PS>A, CLC, RORA, 0 <X+> ROR,
 IFNC, $c055 () STA, THEN, PHA, 3 # AND, 4 # ORA, 1 A>PS, PLA,
 $0c # AND, IFNZ, 8 # CMP, 40 # LDA, IFC, CLC, ROLA, THEN,
 0 <X+> ADC, 0 A>PS, THEN, ;CODE
CODE hi (c pos) 2 PS>A, $7f # AND, 2 A>PS, ;CODE
CODE lo (c pos) 2 PS>A, $80 # ORA, 2 A>PS, ;CODE
: CELL! (c pos) pos2yx yx2a lo C! ;
: CURSOR! (new old --)
 pos2yx yx2a DUP C@ SWAP lo C!
 pos2yx yx2a DUP C@ SWAP hi C! ;

B362
\ Apple IIe drivers, Floppy Drive
\ NOTE: this write 3 bytes over allocated space after N. This
\ might be a problem depending on how variables are arranged.
CODE _p (blkno addr --) \ blkno = ProDOS 512b blk!
 3 # LDA, 'N <> STA, $60 # LDA, 'N 1+ <> STA, 0 <X+> LDA,
 'N 2 + <> STA, 1 <X+> LDA, 'N 3 + <> STA, 2 <X+> LDA,
 'N 4 + <> STA, 3 <X+> LDA, 'N 5 + <> STA,
 INX, INX, INX, INX, ;CODE
: _e LIT" FDErr " STYPE .x ABORT ;
LSET L1 DEX, DEX, 0 <X+> STA, 0 # LDA, 1 <X+> STA, X' _e JMP,
CODE _r $bf00 JSR, $80 C, 'N L, L1 BR BCS, ;CODE
CODE _w $bf00 JSR, $81 C, 'N L, L1 BR BCS, ;CODE
: FD@ (blk blk(--) SWAP << TUCK 1+ OVER $200 + _p _r _p _r ;
: FD! (blk blk(--) SWAP << TUCK 1+ OVER $200 + _p _w _p _w ;

	Documentation Files
	1 General Documentation
	1.1 Introduction to Collapse OS (intro.txt)
	Forth
	Documentation and self-hosting
	Virgil's workspaces
	Where to begin?
	Other topics in this documentation

	1.2 Forth Primer (primer.txt)
	First steps
	Interpreter loop
	Word
	Character encoding
	Dictionary
	Cell size
	Number literals
	Parameter Stack
	Return Stack
	Conditional execution
	Loops
	Exiting early
	Memory access and HERE
	Linking names to addresses
	DOER and DOES>
	IMMEDIATE

	1.3 Collapse OS usage guide (usage.txt)
	Comments
	Cell size and memory map
	Number Literals
	Strings and lines
	Signed-ness
	Branching
	Interpreter and I/Os
	Interpreting and compiling words
	Native words
	VALUE, TO, CONSTANT
	Aliases
	System aliases
	System values
	BEGIN..NEXT
	The A register
	Dealing with performance bottlenecks
	Mass storage through disk blocks
	Useful little words
	Contexts
	DOER and DOES>
	Code generation

	1.4 Implementation notes (impl.txt)
	Execution model
	Dictionary entry
	The Direct Threaded Code model
	Executing a XT (eXecution Tokens) word
	Endian-ness
	Stack management
	Stack underflow and overflow
	System variables
	Initialization sequence
	Stable ABI
	Input buffer (INBUF)

	1.5 Dictionary (dict.txt)
	Glossary
	Symbols
	System variables
	Values and aliases
	Entry management
	Defining words
	Code generation
	Flow
	Parameter Stack
	Return Stack
	Stacks meta
	Memory
	A register
	Arithmetic / Bits
	Logic
	Strings and lines
	I/O
	BLK subsystem (see doc/blk)
	RX/TX subsystem (see doc/rxtx)
	Other
	Loaders
	Kernel internals

	1.6 The BLK subsystem (blk.txt)
	Exploring blocks
	LOADing applications
	How blocks are organized
	Including the BLK subsystem in a kernel

	1.7 RX/TX subsystem (rxtx.txt)
	RX/TX tools
	Remote shell
	Uploading data
	XMODEM
	blksrv client

	1.8 Block Server (blksrv) (blksrv.txt)
	How it works

	1.9 Design considerations (design.txt)
	1.10 Editing text (ed.txt)
	Command-line editor
	Visual Text Editor
	Tight screens

	1.11 Memory Editor (me.txt)
	Tight mode
	Navigating
	Playing with the stack
	Modifying memory

	1.12 Disassemblers (dis.txt)
	1.13 Emulators (emul.txt)
	Usage

	1.14 Programming AVR chips (avr.txt)
	The programmer device
	Programming software
	Ensuring reliability
	Access fuses
	Access flash
	Access EEPROM

	1.15 Word tables (wordtbl.txt)
	1.16 Cross-compilation (cross.txt)
	1. Binary xcomp
	2. Forth xcomp
	Dual-CURRENT
	xcomp unit
	Immediate compiling words trickyness
	Endian-ness
	Constants and IMMEDIATE-ness, oh my!
	Extra words

	1.17 Architecture management (arch.txt)
	1.18 Bootstrap guide (bootstrap.txt)
	Boot code
	Boot words
	Core words (low)
	Drivers
	Core words (high)
	Building it

	1.19 Hardware Drivers (drivers.txt)
	Subsystems

	1.20 The Grid subsystem (grid.txt)
	Grid protocol

	1.21 The PS/2 subsystem (ps2.txt)
	1.22 Sega Master System ROM signatures (sega.txt)
	1.23 Assembling Collapse OS from within it (selfhost.txt)
	What to do on SDerr?
	Cross-compiling directly to EEPROM

	1.24 Algorithmic notes (algo.txt)
	Multiply a number by another
	Divide a number by another, with remainder

	1.25 Frequently asked questions (faq.txt)
	What is the easiest way to run Collapse OS on a modern
	How do I use the different emulators?
	How do I fill my SD card with Collapse OS' FS?

	2 Assemblers
	2.1 Assembling binaries (asm/intro.txt)
	Initial setup
	Wrapping native code
	Usage
	Labels and flow

	2.2 Z80 assembler specificities (asm/z80.txt)
	Flow examples
	IX+, IY+
	Instructions list

	2.3 8086 assembler specificities (asm/8086.txt)
	Argtypes
	Mod/rm mnemonics
	Flow examples
	Instructions list

	2.4 6809 assembler specificities (asm/6809.txt)
	The case of PSH, PUL, TFR, EXG
	Branching
	Instructions

	2.5 6502 assembler (asm/6502.txt)
	Inherent
	Addressed
	Branches

	2.6 AVR assembler specificities (asm/avr.txt)
	Model-specific constants
	Instructions list

	3 How to read the code
	3.1 How to read this code (code/intro.txt)
	Core routines
	HAL and Reserved registers
	Stack comments
	Driver code

	3.2 Z80 Boot code (code/z80.txt)
	3.3 8086 Boot code (code/8086.txt)
	Master Boot Record
	driveno in stable ABI

	3.4 6809 Boot code (code/6809.txt)
	3.5 6502 Boot code (code/6502.txt)

	4 Hardware documentation
	4.1 Running Collapse OS on real hardware (hw/intro.txt)
	Organisation of this folder
	How to use
	Drivers

	4.2 Asynchronous Communications Interface Adapters (hw/acia.txt)
	Flow control
	Broken hardware

	4.3 Writing to a AT28 from Collapse OS (hw/at28.txt)
	Gathering parts
	Building the EEPROM holder
	Writing contents to the AT28

	4.4 Making an ATmega328P blink (hw/avr.txt)
	Building the blink binary

	4.5 Remote access to Collapse OS (hw/tty.txt)
	4.6 Accessing SD cards (sdcard.txt)
	4.7 Communicating through SPI (spi.txt)
	SPI Relay protocol

	5 Hardware: z80 hardware interfaces
	5.1 Interfacing a PS/2 keyboard (hw/z80/ps2.txt)
	Gathering parts
	Building the PS/2 interface
	Using the PS/2 interface

	5.2 PS/2 Connector (hw/z80/img/ps2-conn.png)
	5.3 PS/2 74xx595 (hw/z80/img/ps2-595.png)
	5.4 PS/2 ATtiny45 (hw/z80/img/ps2-t45.png)
	5.5 PS/2 Z80 (hw/z80/img/ps2-z80.png)
	5.6 Building a SPI relay for the z80 (hw/z80/spi.txt)
	Gathering parts
	Building the SPI relay
	Driving the relay

	5.7 SPI Relay Schematic (hw/z80/img/spirelay.jpg)
	5.8 Using Zilog's SIO as a console (hw/z80/sio.txt)

	6 Hardware: Sega Master System (z80 based)
	6.1 Sega Master System (hw/z80/sms/intro.txt)
	Gathering parts
	Hacking up a ROM cart
	Build the ROM
	Usage

	6.2 Writing to a AT28 from a SMS (hw/z80/sms/at28.txt)
	6.3 SMS Dual EEPROM (hw/z80/sms/img/dual-at28.jpg)
	6.4 PS/2 keyboard on the SMS (hw/z80/sms/ps2.txt)
	Gathering parts
	Historical note
	Building the PS/2 interface
	Building the firmware
	Building the binary

	6.5 PS/2 interface (hw/z80/sms/img/ps2-to-sms.png)
	6.6 SMS pad (hw/z80/sms/pad.txt)
	_status (-- n)

	6.7 Building a SPI relay for the SMS (hw/z80/sms/spi.txt)
	Building the binary

	6.8 VDP driver (hw/z80/sms/vdp.txt)

	7 Hardware: Other z80 based devices
	7.1 Dan's Z80 Single Board Computer (hw/z80/dan.txt)
	Configuring Collapse OS

	7.2 TRS-80 Model 4p (hw/z80/trs80-4p.txt)
	Reference documentation
	Memory map and interrupts
	Booting
	Keyboard
	BREAKING away
	Video
	Floppy
	RS-232
	The boot disk
	Creating the boot disk with TRS-DOS
	Testing serial communication
	Building the binaries
	Punching in the goodie
	Getting your DCB address
	Saving that program for later
	Sending binary through the RS-232 port
	Bringing it together
	Using floopy drives
	Sending blkfs to floppy
	Floppy organisation
	Self-hosting

	7.3 Z80-MBC2 (hw/z80/z80mbc2.txt)
	Gathering parts
	Building the binary
	Running on the Z80-MBC2

	7.4 RC2014 (hw/z80/rc2014/intro.txt)
	Gathering parts
	Build the binary
	Emulate
	Running

	7.5 Asynchronous Communications Interface Adapters (hw/z80/rc2014/acia.txt)
	7.6 RC2014 ACIA (hw/z80/rc2014/img/acia.jpg)
	7.7 TI-84+ (hw/z80/ti84/intro.txt)
	Gathering parts
	Build the ROM
	Emulate
	Upload to the calculator
	Background notes
	Instructions
	Validation errors
	Usage

	7.8 TI-84+ LCD driver (hw/z80/ti84/lcd.txt)
	Z-Offset
	6/8 bit columns and smaller fonts
	Words descriptions

	8 Hardware: 6502 based devices
	8.1 Apple IIe (hw/6502/appleiie/intro.txt)
	Reference documents
	Installing Collapse OS
	The Monitor
	Typing it in
	Alternative to typing: SPI hack through game port
	Creating a ProDOS boot disk

	8.2 Apple II's system monitor (hw/6502/appleiie/monitor.txt)
	8.3 Alternative to typing: SPI through game port (hw/6502/appleiie/spihack.txt)
	Reboot afterwards

	9 Hardware: Various other devices
	9.1 PC/AT (hw/8086/pcat.txt)
	Gathering parts
	Build the binary
	Emulation
	Running on a modern PC

	9.2 TRS-80 Color Computer 2 (hw/6809/coco2.txt)
	Relevant Documents
	Gathering parts
	Building the cart
	Running Collapse OS
	ALL CAPS

	9.3 Writing to a AT28 EEPROM from a modern environment (hw/avr/at28.txt)
	Gathering parts
	Schema
	Software
	Usage

	9.4 AT28 R/W (hw/avr/img/at28wr.jpg)
	9.5 Spit bytes through SPI from an Arduino Uno (hw/avr/spispit.txt)
	Gathering parts
	Programming the Arduino
	Ignore the first 3 SCK toggles
	Check the LED

	Block filesystem
	1 Architecture independent
	1.1 Master Index: 0
	B0

	1.2 Useful little words: 1-5
	B1
	B2
	B3
	B4
	B5

	1.3 Pager: 6
	B6

	1.4 Flow words: 7
	B7

	1.5 RX/TX tools: 10-15
	B10
	B11
	B12
	B13
	B14
	B15

	1.6 Block editor: 20-24
	B20
	B21
	B22
	B23
	B24

	1.7 Visual editor: 25-32
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32

	1.8 Memory editor: 35-39
	B35
	B36
	B37
	B38
	B39

	1.9 AVR SPI programmer: 40-43
	B40
	B41
	B42
	B43

	1.10 Sega ROM signer: 45
	B45

	1.11 Cross compilation: 200-205
	B200
	B201
	B202
	B203
	B204
	B205

	1.12 Core words: 210-229
	B210
	B211
	B212
	B213
	B214
	B215
	B216
	B217
	B218
	B219
	B220
	B221
	B222
	B223
	B224
	B225
	B226
	B227
	B228
	B229

	1.13 BLK subsystem: 230-234
	B230
	B231
	B232
	B233
	B234

	1.14 RX/TX subsystem: 235
	B235

	1.15 Grid subsystem: 240-241
	B240
	B241

	1.16 PS/2 keyboard subsystem: 245-248
	B245
	B246
	B247
	B248

	1.17 SD Card subsystem: 250-258
	B250
	B251
	B252
	B253
	B254
	B255
	B256
	B257
	B258

	1.18 Fonts: 260-276
	B260
	B261
	B262
	B263
	B265
	B266
	B267
	B268
	B269
	B270
	B271
	B272
	B273
	B274
	B275
	B276

	1.19 Automated tests: 290-296
	B290
	B291
	B292
	B293
	B294
	B295
	B296

	2 Z80
	2.1 Architecture index: 300
	B300

	2.2 Z80 boot code: 301-314
	B301
	B302
	B303
	B304
	B305
	B306
	B307
	B308
	B309
	B310
	B311
	B312
	B313
	B314

	2.3 Z80 assembler: 320-328
	B320
	B321
	B322
	B323
	B324
	B325
	B326
	B327
	B328

	2.4 AT28 EEPROM: 330
	B330

	2.5 SPI relay: 332
	B332

	2.6 TMS9918: 335-337
	B335
	B336
	B337

	2.7 MC6850 driver: 340-342
	B340
	B341
	B342

	2.8 Zilog SIO driver: 345-348
	B345
	B346
	B347
	B348

	2.9 Sega Master System VDP: 350-352
	B350
	B351
	B352

	2.10 SMS PAD: 355-358
	B355
	B356
	B357
	B358

	2.11 SMS KBD: 360-361
	B360
	B361

	2.12 SMS SPI relay: 367
	B367

	2.13 SMS Ports: 368-369
	B368
	B369

	2.14 TI-84+ LCD: 370-373
	B370
	B371
	B372
	B373

	2.15 TI-84+ Keyboard: 375-379
	B375
	B376
	B377
	B378
	B379

	2.16 TRS-80 4P drivers: 380-391
	B380
	B381
	B382
	B383
	B384
	B385
	B386
	B387
	B388
	B389
	B390
	B391

	2.17 Dan SBC drivers: 395-409
	B395
	B396
	B397
	B398
	B399
	B400
	B401
	B402
	B403
	B404
	B405
	B406
	B407
	B408
	B409

	2.18 Virgil's workspace: 410-416
	B410
	B411
	B412
	B413
	B414
	B415
	B416

	3 AVR
	3.1 Architecture index: 300
	B300

	3.2 AVR macros: 301
	B301

	3.3 AVR assembler: 302-312
	B302
	B303
	B304
	B305
	B306
	B307
	B308
	B309
	B310
	B311
	B312

	3.4 ATmega328P definitions: 315
	B315

	3.5 SMS PS/2 controller: 320-342
	B320
	B321
	B322
	B324
	B325
	B326
	B327
	B328
	B329
	B330
	B331
	B332
	B333
	B334
	B335
	B336
	B337
	B338
	B339
	B340
	B341
	B342

	3.6 Arduino blinker: 345
	B345

	3.7 Arduino SPI spitter: 350-351
	B350
	B351

	4 8086
	4.1 Architecture index: 300
	B300

	4.2 8086 boot code: 301-309
	B301
	B302
	B303
	B304
	B305
	B306
	B307
	B308
	B309

	4.3 8086 assembler: 311-318
	B311
	B312
	B313
	B314
	B315
	B316
	B317
	B318

	4.4 8086 drivers: 320-324
	B320
	B321
	B322
	B323
	B324

	5 6809
	5.1 Architecture index: 300
	B300

	5.2 6809 macros: 301
	B301

	5.3 6809 boot code: 302-305
	B302
	B303
	B304
	B305

	5.4 6809 HAL: 306-310
	B306
	B307
	B308
	B310

	5.5 6809 assembler: 311-318
	B311
	B312
	B313
	B314
	B315
	B316
	B317
	B318

	5.6 TRS-80 Color Computer 2: 320-324
	B320
	B321
	B322
	B323
	B324

	5.7 6809 disassembler: 325-335
	B325
	B326
	B327
	B328
	B329
	B330
	B331
	B332
	B333
	B334
	B335

	5.8 6809 emulator: 340-354
	B340
	B341
	B342
	B343
	B344
	B345
	B346
	B347
	B348
	B349
	B350
	B351
	B352
	B353
	B354

	5.9 Virgil's workspace: 360
	B360

	6 6502
	6.1 Architecture index: 300
	B300

	6.2 6502 macros and consts: 301
	B301

	6.3 6502 assembler: 302-307
	B302
	B303
	B304
	B305

	6.4 6502 port macros: 309
	B309

	6.5 6502 boot code: 310-320
	B310
	B311
	B312
	B313
	B314
	B315
	B316
	B317
	B318
	B319
	B320

	6.6 6502 disassembler: 330-334
	B330
	B331
	B332
	B333
	B334

	6.7 6502 emulator: 335-342
	B335
	B336
	B337
	B338
	B339
	B340
	B341
	B342

	6.8 Virgil's workspace: 350-355
	B350
	B351
	B352
	B353
	B354
	B355

	6.9 Apple IIe drivers: 360-362
	B360
	B361
	B362

